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ANALYSIS OF FRICTION CHARACTERISTIC
PARAMETERS IMPACT ON VIBRATION OF COUPLE

OF BLADES WITH FRICTION ELEMENT

Jan Br̊uha*, Vladimı́r Zeman*

Presented work concerns with a sensitivity analysis of a harmonically excited bending
vibration of a rotating couple of blades with a friction element with regard to the
parameters of the friction characteristic. Either of the blades is discretized by FEM
using beam elements and continuously distributed weight is concentrated in nodal
points. The friction in central contact points between blade shrouds and the friction
element is approximated by a continuous function depending on slip velocities of the
shrouds relative to the friction element. Considered friction characteristic respects
the micro-slip phase at the very low slip velocities and the macro-slip (full-slip) phase
at the higher slip velocities. The values of the friction characteristic parameters are
identified by comparison of the numerical simulations of a transient vibration with
experiments used in IT AS CR.

Keywords : blade vibration, dry friction, friction characteristic parameters, sensitivity
analysis, numerical simulation

1. Introduction

While power plants are still projected more powerful and effective, demands on reliability
of these machines are rising. Blade vibrations as a side effect the operation of steam turbines
are very dangerous because of the high cycle fatigue failure. One of the basic methods of
bladed disk vibrations suppression is inserting friction elements between blade shrouds.
Dissipation of energy, due to dry friction between the blade shroud surfaces and the friction
element surfaces, or using detuning masses mounting on certain blade shrouds belong to
basic methods of bladed disk vibrations suppression. Detail investigation of influences of
a friction (mainly the friction phenomenon) on a dynamical response of a beam can be
found in [1]. Some publications deal with the friction induced by means of friction elements
inserted between the blades. A method for the calculation of a static balance supposing an
in-plane motion of the wedge friction element is discussed in [2]. An analytical approach is
described in [3] and comparison of numerical simulation results with the results obtained
by linearization is shown in [4]. The equivalent linearization method for the evaluation
of friction effects can be used as the first approximation by means of so-called equivalent
viscous damping [5]. This method has been experimentally verified in [6] and applied in the
Department of Mechanics of University of West Bohemia in Pilsen to the harmonic forced
vibration of two rotating blades with friction damping [7]. The friction impact in contact
areas between the blade shrouds and the friction element embedded between the shrouds on
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blade vibrations has been experimentally researched in a frame of the grant project GA CR
101/09/1166 ‘Research of dynamic behavior and optimization of complex rotating system
with non-linear couplings and high damping materials’ in the Institute of Thermomechanics
of the Academy of Sciences of the Czech Republic (IT AS CR) [8], [9]. In accordance with
the experimental arrangement tested in IT AS CR (Figure 1), the computational model
of a couple of clamped blades into a horizontal situated non-rotating (ω0 = 0) rigid disk
(Figure 2) has been designed.

Fig.1: Experimental arrangement tested in IT AS CR

Fig.2: Physical model of the couple of blades with friction element

In the article [10], it has been investigated a detuning of blades caused by an additional
mass mounted on one of the blade shroud and friction impact on harmonically excited
bending vibration suppression. The characteristics of frictional forces in contact areas have
been approximated by the continuous function tgh with the argument expressed slip velocity
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of the central contact point of the blade shroud relative to the friction element multiplied by
a constant defining an inclination of this function for very low slip velocity. Experimentally
ascertained results with an ARAMID friction element [11] as well as computational analysis
of various types of dry friction characteristics [12] have proved significant micro- and macro-
slip phases impact. However, assuming the friction characteristic is approximated by tgh
function, separation of these phases is very difficult. Therefore, the aim of this article is to
analyze chosen parameters impact of more sophisticated characteristic of frictional forces [13]
on transversely excited vibration of couple of blades clamped into a rigid rotating disk with
a friction element placed between blade shrouds. For the reason that we also want to analyze
rotating impact on the blade vibrations, the mathematical model of the couple of blades with
the friction element is generalized and respects inertial effects under rotation with constant
angular velocity.

2. Mathematical model of a blade in rotating space

To discretize the blade in rotating space, it has been necessary to derive one-dimensional
beam element’s matrices in local coordinate system of the blade rotating with angular veloc-
ity ω0. We assume a bending vibration of the blade in its plane of symmetry x̂y combined
with a torsional vibration along the longitudinal axis. The spatial motion of a blade’s mass
element with length dx and at distance x to the origin of the beam element between nodes
i− 1 and i can be described by translational motion with the velocity of the mass centre s
expressed in coordinate system xyz (Figure 3) by vector

vs(x, t) = [0, v̇(x, t),−ω0(ri−1 + x)]T , (1)

where ri−1 is perpendicular distance (radius) of the initial blade’s element node i− 1 from
axis of rotation y (see Figure 3), and relative spherical motion around this centre. The
immediate angular velocity is described by vector

ω = [ϕ̇(x, t) + ω0 sinψ(x, t), ω0 cosψ(x, t), ψ̇(x, t)]T (2)

expressed in coordinate system ξηζ, where η̂ζ is the plane of the blade’s cross-section after
deformation. As a consequence, deformations in place x of the blade’s element are described
by transversal displacement v(x, t), flexural displacement ψ(x, t) and torsional displacement
ϕ(x, t) of the cross-section.

Fig.3: Deformation of the blade’s element
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Let us suppose, the flexural ψ(x, t) and torsional ψ(x, t) displacements are small. Then,
the mathematical model of the undamped beam element of the blade between the nodes
i− 1 and i can be derived in configuration space

q(e) = [vi−1, ψi−1, vi, ψi, ϕi−1, ϕi]T , (3)

where vi−1 = v(0, t), ψi−1 = ψ(0, t), vi = v(l, t), ψi = ψ(l, t), ϕi−1 = ϕ(0, t), ϕi = ϕ(l, t).
The kinetic energy of the finite blade’s element with length l, cross-section area A and
material density ρ can be expressed in the form

E
(e)
k =

1
2

l∫
0

[
AvT

s (x, t) vs(x, t) + ωT(x, t) Jω(x, t)
]
ρ dx , (4)

where the inertia matrix of the blade’s mass element J ρ dx is described by matrix of the
second moments of area of cross-section

J =

⎡⎣Jη + Jζ 0 0
0 Jη 0
0 0 Jζ

⎤⎦ (5)

about the major axes of cross-section ηζ. The potential energy of deformation of the blade’s
element is expressed as [14]

E(e)
p =

1
2

l∫
0

∫
(A)

{
E ε2x(x, t) +G

[
γ2
xy(x, t) + γ2

xz(x, t)
]}

dAdx , (6)

where E is Young’s modulus and G is shear modulus. Providing small deformations and
considering Bernoulli-Navier hypothesis (during deflection, the plane normal cross-sections
of the blade remain plane and normal to the deflected centroidal axis of the blade), the
components of the strain vector (arguments x, t are left out) are in the place of the cross-
section given by axes η, ζ expressed in the form

εx = −η ∂
2v

∂x2
, γxy = −ζ ∂ϕ

∂x
, γxz = η

∂ϕ

∂x
. (7)

In accordance with these assumptions, the potential energy of deformation is written in the
form

E(e)
p =

1
2

l∫
0

∫
(A)

[
E

(
η
∂2v

∂x2

)2

+G

(
∂ϕ

∂x

)2 (
η2 + ζ2

)]
dAdx . (8)

The transversal deformation of the blade’s element is approximated by cubic basis functions

v(x, t) = Φ(x) c1(t) , Φ(x) = [ 1 x x2 x3 ] ,

ψ(x, t) =
∂v(x, t)
∂x

=
∂Φ(x)
∂x

c1

(9)

and the torsional displacement by using linear basis function

ϕ(x, t) = ψ(x) c2(t) , ψ(x) = [ 1 x ] . (10)
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Let we write the boundary conditions for cases x = 0 and x = l :⎡⎢⎣
v(0, t)
ψ(0, t)
v(l, t)
ψ(l, t)

⎤⎥⎦ = q1(t) =

⎡⎢⎣
1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

⎤⎥⎦
︸ ︷︷ ︸

S1

c1(t) ,
[
ϕ(0, t)
ϕ(l, t)

]
= q2(t) =

[
1 0
1 l

]
︸ ︷︷ ︸

S2

c2(t) . (11)

Now, we can put the vectors of coefficients of the basis functions c1(t), c2(t)

c1(t) = S−1
1 q1(t) , c2(t) = S−1

2 q2(t) (12)

into (9), (10) and we get the relations between deformation of the finite blade’s element and
generalized coordinates of the nodes i− 1 and i

v(x, t) = Φ(x) S−1
1 q1(t) , ψ(x, t) =

∂Φ(x)
∂x

S−1
1 q1(t) ,

ϕ(x, t) = ψ(x) S−1
2 q2(t) .

(13)

During the rotation, due to the centrifugal force, the blade is stretching and the bending
resistance is rising. This effect can be described by deformation energy [15]. The extended
length of the mass blade’s element with original length dx is

ds = dx

√
1 +
(
∂v

∂x

)2

. (14)

According to the small deformations, we get from the Taylor expansion

ds ∼= dx

[
1 +

1
2

(
∂v

∂x

)2
]
. (15)

The deformation energy increment in the mass element of the finite blade’s element e is
caused by work of the centrifugal force S(e)

0 (x)

dE(e)
p = S

(e)
0 (x) (ds− dx) =

1
2
S

(e)
0 (x)

(
∂v

∂x

)2

dx (16)

and in the whole finite blade’s element

ΔE(e)
p =

1
2

l∫
0

S
(e)
0 (x)

(
∂v

∂x

)2

dx . (17)

If we use the first of the relations (13), the deformation energy increment in the finite
blade’s element can be in case the constant centrifugal force along the element S(e)

0 (x) = S
(e)
0

rewritten as

ΔE(e)
p =

1
2
S

(e)
0 qT

1 (t) S−T
1

l∫
0

Φ′T(x) Φ′(x) dxS−1
1 q1(t) . (18)
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The mathematical model of the undamped finite blade’s element is derived by rewriting
the Lagrange’s equations into the mathematical form

d
dt

(
∂E

(e)
k

∂q̇(e)

)
− ∂E

(e)
k

∂q(e)
+
∂(E(e)

p + ΔE(e)
p )

∂q(e)
=

= M(e) q̈(e) + ω0 G(e) q̇(e) + [K(e)
s + ω2

0 (K(e)
ω − K(e)

d )] q(e) .

(19)

Using approximation relations (13) and according to (4), (8), (18) we are able to express the
kinetic and potential energy of the blade’s element and after simplifications of the identity
(19) we get symmetric mass M(e), static stiffness K(e)

s , bending stiffening ω2
0 K(e)

ω and softe-
ning −ω2

0 K(e)
d matrices and a skew-symmetric matrix of gyroscopic effects ω0 G(e) in the

form

M(e) = ρ

[
AS−T

1 IΦ S−1
1 + Jz S−T

1 IΦ′ S−1
1 0

0 Jp S−T
2 IΨ S−1

2

]
,

G(e) = ρ

[
0 −Jp S−T

1 IΦ′ Ψ S−1
2

Jp S−T
2 IΨΦ′ S−1

1 0

]
,

K(e)
s =

[
E Jz S−T

1 IΦ′′ S−1
1 0

0 GJk S−T
2 IΨ′ S−1

2

]
,

ω2
0 K(e)

ω = S
(e)
0

[
S−T

1 IΦ′ S−1
1 0

0 0

]
, K(e)

d =
[
ρ Jp S−T

1 IΦ S−1
1 0

0 0

]
.

(20)

Each of the blade’s elements is defined by quantities A (cross-section area), Jz (the se-
cond moment of area of cross-section about the axis z), Jp (the polar second moment of
area), Jk (torsion constant) and material parameters ρ (density), E (Young’s modulus) and
G (shear modulus). In these matrices of the finite blade’s element with length l (20), there
have been used integral matrices [16]

IΦ =

l∫
0

ΦT(x) Φ(x) dx , IΨ =

l∫
0

ΨT(x) Ψ(x) dx ,

IΦ′ =

l∫
0

Φ′T(x) Φ′(x) dx , IΨ′ =

l∫
0

Ψ′T(x) Ψ′(x) dx ,

IΦ′′ =

l∫
0

Φ′′T(x) Φ′′(x) dx , IΦ′Ψ =

l∫
0

Φ′T(x) Ψ(x) dx ,

(21)

where the prime symbol marks derivation with respect to x, the superscript −1 marks
inversion and T transposition.

The configuration space defined by (3) is more suitable for the blade’s element modeling,
because the mass, gyroscopic effects and stiffness matrices have a simple block-diagonal
structure. Owing to the blade topology of the chain-type and the sequential numbering of the
degrees of freedom, it is useful to transform the blade’s element matrices into a configuration
space

qe = [vi−1, ψi−1, ϕi−1, vi, ψi, ϕi]T (22)
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with different displacement arrangement. Then, the global blade’s matrices (subscript B)
MB, GB, Ks,B, Kω,B, Md,B have a block-diagonal structure. For this purpose, let us derive
a transformational matrix T :

q(e) =

⎡⎢⎢⎢⎢⎢⎣
vi−1

ψi−1

vi

ψi

ϕi−1

ϕi

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
vi−1

ψi−1

ϕi−1

vi

ψi

ϕi

⎤⎥⎥⎥⎥⎥⎦ = Tqe . (23)

Thereafter, the transformed mass M̃(e), gyroscopic effects ω0 G̃(e), static stiffness K̃(e)
s , bend-

ing stiffening ω2
0 K̃(e)

ω and softening −ω2
0 K̃(e)

d matrices of the beam element are expressed in
the form

X̃(e) = TT X(e) T , X(e) = M(e), ω0 G(e),K(e)
s , ω2

0 K(e)
ω ,−ω2

0K
(e)
d . (24)

The blade’s matrices are comprised of the transformed matrices of all beam elements and
they are supplemented with mass, gyroscopic effects and softening under rotation matrices
of the rigid blade shroud. After these standard operations and including a material damping
of the blade approximated by a proportional damping matrix in the form

BB = αMB + βKs,B , (25)

where the coefficients α, β of the proportional damping are calculated from estimated dam-
ping ratios of the two lowest bending mode shapes of the blade, the mathematical model of
the damped blade with the shroud has the form

MB q̈B + (BB + ω0 GB) q̇B + [Ks,B + ω2
0 (Kω,B − Kd,B)] qB = 0 , (26)

where

qB = [ . . . , vi, ψi, ϕi, . . . ]T , i = 1, 2, . . . , N (27)

and N is number of nodes, whereas the last node is in the centre of the blade shroud’s gravity.
In comparison with non-rotating blade (ω0 = 0), the equations of motion of rotating blade
contain a skew-symmetric matrix of gyroscopic effects ω0 GB and symmetric matrices of
bending stiffening under rotation ω2

0 Kω,B because of the centrifugal forces and softening
under rotation −ω2

0 Kd,B due to the vibration modeling in rotating space.

3. Model of the couple of blades with friction element

In this work, the friction element is considered a mass point with mass me elastically
placed in vertical direction in a wedge gap between the blade shrouds and it can do only
vertical displacement ve in the gap.
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The mathematical model of the whole system of the couple of blades with the friction
element is⎡⎣M1 0 0

0 me 0
0 0 M2

⎤⎦
︸ ︷︷ ︸

M

⎡⎣ q̈1

v̈e
q̈2

⎤⎦
︸ ︷︷ ︸

q̈

+

⎡⎣B1 + ω0 G1 0 0
0 0 0
0 0 B2 + ω0 G2

⎤⎦
︸ ︷︷ ︸

B+ ω0 G

⎡⎣ q̇1

v̇e
q̇2

⎤⎦
︸ ︷︷ ︸

q̇

+

+

⎛⎜⎜⎜⎜⎜⎜⎝
⎡⎣Ks,1 + ω2

0 (Kω,1 − Kd,1) 0 0
0 0 0
0 0 Ks,2 + ω2

0 (Kω,2 − Kd,2)

⎤⎦
︸ ︷︷ ︸

Ks + ω2
0 (Kω−Kd)

+KC

⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎣q1

ve
q2

⎤⎦
︸ ︷︷ ︸

q

=

=

⎡⎣ f1(t)
0

f2(t)

⎤⎦
︸ ︷︷ ︸

f(t)

+

⎡⎣ −fA(cA)
FtA(cA) + FtB(cB)

−fB(cB)

⎤⎦
︸ ︷︷ ︸

f∗

,

(28)

where subscripts 1 and 2 correspond to the blades. The stiffness matrix KC of internal
elastic couplings between the friction element and the blade shrouds is in its compressed
form expressed as

K̃C = ke

⎡⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤⎦ (29)

and providing discretization of either of the blades on five finite elements, the elements
of the compressed stiffness matrix K̃C of internal elastic couplings are in matrix KC lo-
cated on positions of displacements v5,1, ve and v5,2 in the generalized coordinate vector
q = [qT

1 , ve,q
T
2 ]T.

Frictional forces concentrated in central contact points A, B (Figure 2) are approximated
by continuous function of corresponding slip velocity

cA = v̇5,1 + rA ϕ̇5,1 − v̇e , cB = v̇5,2 − rB ϕ̇5,2 − v̇e , (30)

where rA and rB are perpendicular distances between the contact points and the axes of the
blades. The frictional forces respect the new friction characteristic in the form

FtX =
{
NX [fd + (fs − fd) e−d |cX |] sign(cX) , |cX | > cr ,

NX
cX

cr
[fd + (fs − fd) e−d cr ] , |cX | ≤ cr ,

X = A,B , (31)

displayed on Figure 4. The micro- and macro-slip phases are separated by critical slip
velocity cr defining length of the micro-slip velocities interval −cr ≤ cX ≤ cr, X = A,B,
where the friction is approximated by steep line [12]. Normal forces acting in contact areas
are determined by friction element geometry and result from the equations of equilibrium
in horizontal plane (Figure 5)

NA = me re ω
2
0

cos(β + δ)
sinβ

, NB = me re ω
2
0

cos δ
sinβ

, (32)

where me re ω
2
0 (in Figure 2 marked as FC) is centrifugal force acting on the friction element

in its centre of gravity.
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The vectors of frictional forces in equations of motion (28) can be written in following
form :

fA(cA) = FtA [0, 0, . . . , 1, 0, rA]T , fB(cB) = FtB [0, 0, . . . , 1, 0, rB]T . (33)

The excitation vectors fj(t), j = 1, 2 depend on particular realization of the blades’ excita-
tion.

Fig.4: Characteristic of frictional
forces in contact areas

Fig.5: Detail of the friction element
placed between the shrouds

For determination of time behaviour of the generalized coordinates, the MATLAB envi-
ronment is used. First of all the model (28) is rewritten as a system of first-order differential
equations in the form[

q̇(t)
q̈(t)

]
=
[

0 E
−M−1 [Ks + ω2

0 (Kω − Kd) + Kc] −M−1 (B + ω0 G)

] [
q(t)
q̇(t)

]
+

+
[

0
M−1 [f(t) + f∗]

]
,

(34)

where E is a unit matrix, and then it is solved with the MATLAB ODE23 numerical solver,
which is based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine [17].

4. Analysis of the friction characteristic impact on bending vibration of the
blade shroud under rotation

Experiments realized in IT AS CR [11] approximately allow to identify parameters
fd (dynamic coefficient of friction), fs (static coefficient of friction), d (coefficient of de-
crease) and critical slip velocity cr separating micro- and macro-slips. In consequence of
good conformity of experimentally ascertained transient vibration and numerical simulation
results on the model (28) with ARAMID friction element for ω0 = 0 and after switching off
of the electromagnet (jump stopping of the excitation force), we regard the values fd = 0.3,
fs = 0.6, d = 2 s m−1, cr = 10−3 m s−1 [13] as reference.

Figures 6–9 display transient vibrations of one of the rotating blades (the second one)
supposing the harmonic excitation by non-rotating electromagnet producing transversal
(in y axis direction) force F (t) = F0 sin 2π f1 t with amplitude F0 = 15 N and frequency
f1 = 131.65Hz corresponds to the lowest eigenfrequency of the blade with shroud. The
revolution speed of the bladed disk has been chosen as n = 263.3 rpm, when the excitation
under the electromagnet has opposite direction on neighbouring blades. There are compared
two different variations of transient vibrations for two values of the coefficient of decrease
(d = 2, d = 50).
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Fig.6: Time behaviour of the blade shroud transversal displacement and slip velocity
of this shroud relative to friction element; parameters of the friction charac-
teristic : fd = 0.3, fs = 0.6, d = 2 sm−1, cr = 10−3 m s−1

Fig.7: Detail of the blade shroud transversal displacement
from Figure 6 and excitation force
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Fig.8: Time behaviour of the blade shroud transversal displacement and slip velocity
of this shroud relative to friction element; parameters of the friction charac-
teristic : fd = 0.3, fs = 0.6, d = 50 sm−1, cr = 10−3 m s−1

Fig.9: Detail of the blade shroud transversal displacement
from Figure 8 and excitation force
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Fig.10: Time behaviour of the blade shroud transversal displacement
of model without friction element, detail of this transversal dis-
placement and detail of the resonance force pulse excitation

As the second example of analysis of friction impact in contact areas between the blade
shrouds and the friction element, let us suppose transient vibrations of one of the blades (the
second one) providing synchronous and resonance excitation realized by two non-rotating
electromagnets radially placed (oppositely to each other) in vicinity of the rotating blade
shrouds. Excitation of the blades is approximately substituted by rectangular pulses [18]
shown on Figures 10–11. The excitation forces acting on blade shrouds are expressed as

F1(t) = F0

K∑
k=0

{H (t− k Tb) −H [t− (k Tb + τ)]} , (35)

F2(t) = F0

K∑
k=0

{H [t− (k Tb + Δt)] −H [t− (k Tb + Δt+ τ)]} , (36)

where F0 = 15 N is amplitude of the rectangular pulses, Tb = m/f1 is period of the resonance
pulse excitation, m = 10 is ratio of the excitation period to period of the lowest eigenfre-
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Fig.11: Time behaviour of the blade shroud transversal displacement of model with
friction element, detail of this transversal displacement, detail of slip velocity
of this shroud relative to friction element and detail of the resonance force
pulse excitation

quency of the blade with shroud, τ = 0.00566 s is width of the pulses and Δt = 0.00253 s is
time delay of the pulses on the second blade. Figures 10–11 show the transient vibrations
for resonance excitation by revolution speed n = 394.95 rpm. Time behaviour of transient
vibration of the couple of blades without the friction element (fs = fd = 0, Figure 10)
are compared with time behaviour of transient vibration of the couple of blades with the
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friction element and friction characteristic parameters fd = 0.3, fs = 0.6, d = 2 s m−1,
cr = 10−3 m s−1 (Figure 11).

5. Conclusions

Designed computational model of the rotating couple of blades with friction element
allows to analyse impacts of the parameters of characteristic of frictional forces, acting in
central contact points between the blade shrouds and the friction element, and angular
velocity of the bladed disk on bending and torsional blade vibrations. This paper deals with
two different analyses of friction impact on bending blade vibration providing steady bladed
disk’s rotation with constant angular velocity ω0. For this reason, the model of the blades
has been supplemented with matrices of gyroscopic effects, bending stiffening under rotation
because of the centrifugal forces and softening under rotation due to the vibration modeling
in rotating space. Connecting of the friction element to the blade shrouds has been realized
by using springs situated transversely to the blades’ axes.

In the first task, excitation of the blades has been performed by one non-rotating elec-
tromagnet placed in vicinity of the rotating blade shrouds. Evoked magnetic field has acted
on blade shrouds by harmonic varying force with the frequency corresponding to the low-
est eigenfrequency of the blade with shroud. The revolution speed of the bladed disk has
been chosen to ensure the opposite direction of the excitation on neighbouring blades. In
comparison with the variant d = 50, lower value of the coefficient of decrease of the friction
characteristic (d = 2) has entailed considerably lower slip speeds of the blade shrouds relative
to the friction element and partially also bending vibration suppression of the blades.

The second task has been focused on investigation of importance of the friction element
embedded into a wedge gap between the blade shrouds in case synchronous and resonance
transversal excitation realized by two non-rotating electromagnets radially placed (oppo-
sitely to each other) in vicinity of the rotating blade shrouds. Owing to dissipation of
energy in contact areas, inserting of the friction element into the gap has a positive effect in
decreasing of extreme values of transversal amplitudes of the blade shrouds by 30 %.
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