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MODAL CONDENSATION OF BLADED DISK

Jakub Šašek*, Vladimı́r Zeman*, Josef Kellner*

The aim of the paper is modal condensation of a system which represents bladed disk.
These kinds of systems are mainly used in steam turbines what is the topic of the
article. The model of the bladed disk is based on decomposition into a disk subsystem
and a blading subsystem. The finite element method is used for modeling of the both
subsystems. All influences of steady-state rotation are respected as centrifugal forces,
gyroscopic effects, centrifugal stiffening of blades and dynamic softening. Blades
are modeled by using 1D elements and the disk is modeled by using 3D hexahedral
elements. Modal condensation is applied to a disk subsystem. Different levels of the
condensation are presented and compared on a testing bladed disk.
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1. Introduction

Many rotating systems with disks are modeled as an one-dimensional rotating shaft
with clamped rigid disks [1], [2]. This approach can be usually applied on rotating systems
excited in time periodic forces and moments with speed frequency and its multiple. Bladed
disks in turbo machines are excited by high frequency hydrodynamical forces in which the
high frequency vibration modes of the disks can not be neglected. Many publications are
dedicated to the dynamic analysis of the thin rotating disks [3]. In known publications the
flexible disk is modeled separately as an isolated subsystem or the flexible disk is linked to
rigid body on the interior or external surfaces.

This article is focused on the simulation of the behavior of bladed disks which are main
building blocks of steam turbines. The main aim of the research is the investigation of the
dynamic behavior of disk blades with nonlinear friction elements, which can reduce unde-
sirable high vibrations of blades. Several approaches of these nonlinearities modeling can
be found in [11] and [12]. The treatment, how to mathematically describe nonlinear friction
elements, is not the purpose of this paper. But the reduction of degrees of freedom (DoF)
of a mathematical model can be useful due to time consumption of numerical simulation of
nonlinear systems.

Another phenomenons is requirement on higher efficiency and wide operation range of
steam turbines, which leads to higher necessities of accuracy of their finite element (FE)
mathematical models. The accuracy of models is directly bounded with higher number of
DoF which affects central processing unit (CPU) and memory costs for computation. Usage
of condensation techniques is also helpful to decrease this phenomenon. The presented arti-
cle demonstrates generally accepted modal synthesis method with condensation [4] applied
to the mathematical model of disk subsystem. The method is tested on a model of the
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imperfect bladed disk which has been developed for experimental research at Institute of
Thermomechanics of the Academy of Sciences of the Czech Republic [5].

2. Mathematical model of a bladed disk

We assume that the bladed disk is centrally clamped on inner radius to rigid shaft
rotating by constant angular velocity ω around y-axis. Blades are mounted to the disk by
rigid blade feet and shrouds are fixed to free ends of selected blades. The friction elements
are embedded between blade shrouds of some blades. Fig. 1 demonstrates a representative
disk with a blade. The disk is modeled by 3D hexahedral elements. The blades are modeled
using 1D elements. Equations of motion are derived in the rotating coordinate system, which
is fixed to a nondeformed bladed disk and rotates with constant angular velocity ω [6]. The
equations of motion of these two uncoupled subsystems (disk and blades) can be written in
following form [7], [8]

MD q̈D(t) + ωGD q̇D(t) + (Ks,D − ω2 Kd,D) qD(t) = ω2 fD , (1)

MB q̈B(t) + ωGB q̇B(t) + (Ks,B + KC,B + ω2 Kω,B − ω2 Kd,B) qB(t) = ω2 fB , (2)

where index D corresponds to a disk subsystem and index B corresponds to a subsystem of
blades. MD and MB are mass matrices, ωGD and ωGB express gyroscopic effects, Ks,D

and Ks,B represent static stiffness matrices, KC,B is contact stiffness matrix between shrouds
and friction elements, ω2 Kω,B represents blade centrifugal stiffening, ω2 Kd,D and ω2 Kd,B

are matrices of dynamic spin softening of 1D and 3D continuum in centrifugal field. All
described matrices are symmetrical except skew-symmetrical matrices of gyroscopic effects.
Centrifugal load vectors ω2 fD and ω2 fB are constant in time.

The equations of motion for deformable disks are written in a configuration space de-
fined by vector qD = [ · · · uj vj wj · · · ]T ∈ RnD of nodal displacements with respect

Fig.1: The blade i with a shroud and a friction elements mounted to a disk
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to the rotating xyz-coordinate system. The motion equations of the blades with shrouds
and friction elements (see Fig. 1) are written in configuration space defined by vector
qB = [ · · · uj vj wj ϕj ϑj ψj · · · ]T ∈ RnB of nodal displacements with respect to the same
rotating xyz-coordinate system.

The vector of disk generalized coordinates can be partitioned with respect to the couplings
between disk and blades in the form

qD =
[
q(F)

D

q(C)
D

]
, q(F)

D ∈ Rn
(F)
D , q(C)

D ∈ Rn
(C)
D , (3)

where the displacements of the disk nodes, which are coupled to blade foots, can be expressed
by the displacements of the first blade nodes. This relation for displacements of coupled
disk nodes j on the foot of the blade i and the first node of blade is
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or shortly
q(C)

j = Tj,i qi , (5)

where αi is the angle between the rotating disk axis x and rotating blade axis xj and xj , yj,
zj are coordinates of the coupled disk nodes j in the coordinate system xiyizi of the blade
i with the origin in the first blade node Ri.

The displacements of the free (uncoupled) disk nodes are localized in vector q(F)
D ∈ Rn

(F)
D .

The total transformation between displacements of all coupled nodes of the disk with blades
can be expressed in the matrix form⎡⎢⎢⎢⎣

...

q(C)
j
...

⎤⎥⎥⎥⎦ =
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qi

...

⎤⎥⎥⎥⎦ =⇒ q(C)
D = TD,B qB , (6)

where the rectangular transformation matrix is TD,B ∈ Rn
(C)
D ,nB and n

(C)
D = nD − n

(F)
D is

DoF number corresponding to coupled nodes of the disk.

3. Condensed mathematical model of the system

The nodal coordinates of the disk FE models can be used directly as elastic coordinates,
although the number of degrees of freedom required to adequately represent the deformation
may be very large. Hence, the number of free node elastic coordinates q(F)

D of the disk is
desirable reduced by the use of modal condensation [9]. Similar approach was used for
condensation of disks mounted to a shaft [10]. For that purpose each matrix and vector in
the disk mathematical model (1) can be rearranged according to decomposition (3)

XD =
[
XFF

D XFC
D

XCF
D XCC

D

]
, X = M,G,Ks,Kd , fD =

[
f (F)
D

f (C)
D

]
. (7)
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Let modal properties of the conservative model of the non-rotating disk (for ω = 0) with
blade foots be characterized by spectral and modal matrices satisfying the orthogonality
conditions

VT
D MD VD = E , VT

D KD VD = ΛD , (8)

where E is unit matrix. Modal matrices of disks can be rearranged into the block form

VD =
[

mVF
D

sVF
D

mVC
D

sVC
D

]
, (9)

corresponding to decomposition (3) and eigenvectors separation into frequency lower eigen-
vectors (so called master – superscript m) and frequency higher eigenvectors (so called slave
– superscript s). The vectors q(F)

D , corresponding to free disk nodes, can be approximately
transformed in the form

q(F)
D = mVF

D xD , (10)

where mVF
D ∈ Rn

(F)
D ,mD is the modal sub-matrix of the disk corresponding to free disk

generalized coordinates and frequency lower eigenmodes. Higher frequency modes usually
contribute less to the disk deformation and their influence can be neglected.

The motion equations of the fictive system assembled from uncoupled subsystems – the
disk and the blades – in the configuration space

q =
[
(q(F)

D )T (q(C)
D )T qT

B

]T
(11)

can be formally rewritten as

Mq̈(t) + ωGq̇(t) + (Ks + ω2 Kω − ω2 Kd) q(t) = ω2 f , (12)

where, according to mathematical models (1) and (2), matrices have the block-diagonal
form X = diag(XD,XB), X = M,G,Kd, and Ks = diag(Ks,D,Ks,B + KC,B), Kω =
= diag(0,Kω,B), and f = [fD, fB]T. The vector of generalized coordinates q in consequence
of the couplings (6) and modal transformations (10) can be transformed into new vector
q̃ = [xT

D,q
T
B]T of the dimension m = mD + nB. The transformation is given by⎡⎣ q(F)

D

q(C)
D

qB

⎤⎦ =

⎡⎣mVF
D 0

0 TD,B

0 EnB

⎤⎦[xD

qB

]
. (13)

The condensed mathematical model of the bladed disk in the configuration space q̃ takes
the form

M̃ ¨̃q(t) + ω G̃ ˙̃q(t) + (K̃s + ω2K̃ω − ω2 K̃d) q̃(t) = ω2 f̃ , (14)

where condensed mass, gyroscopic, static stiffness, centrifugal stiffening and dynamic spin
softening matrices are given by X̃ = TT XT, X = M,G,Ks,Kω,Kd, and f̃ = TT f .

4. Application

The presented method is tested on a simple test example of an imperfect bladed disk [5].
The imperfect bladed disk consists of a disk, which is fixed on inner radius to rigid shaft,
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eig. full condensed models (condensation level c)
mod. model c = 20 c = 80 c = 320

i fi [Hz] fi [Hz] ε [%] fi [Hz] ε [%] fi [Hz] ε [%]
1 0.775 0.775 0.000 0.775 0.000 0.775 0.000
2 0.775 0.775 0.000 0.775 0.000 0.775 0.000
3 0.775 0.775 0.000 0.775 0.000 0.775 0.000
4 0.775 0.775 0.000 0.775 0.000 0.775 0.000
5 0.775 0.775 0.000 0.775 0.000 0.775 0.000
6 0.775 0.775 0.000 0.775 0.000 0.775 0.000
7 0.775 0.775 0.000 0.775 0.000 0.775 0.000
8 0.775 0.775 0.000 0.775 0.000 0.775 0.000
9 89.233 89.343 0.123 89.239 0.007 89.233 0.000
10 93.729 93.823 0.100 93.738 0.010 93.730 0.001
11 110.407 110.444 0.034 110.410 0.003 110.407 0.000
12 120.384 120.440 0.047 120.389 0.004 120.384 0.000
13 123.601 124.084 0.391 123.610 0.007 123.602 0.001
14 137.329 137.616 0.209 137.354 0.018 137.334 0.004
15 139.865 140.099 0.167 139.884 0.014 139.869 0.003
16 140.669 140.707 0.027 140.691 0.016 140.675 0.004
17 140.848 140.931 0.059 140.874 0.018 140.854 0.004
18 141.073 141.089 0.011 141.087 0.010 141.080 0.005
19 141.172 141.184 0.009 141.182 0.007 141.176 0.003
20 141.181 141.191 0.007 141.190 0.006 141.185 0.003
21 141.261 141.341 0.057 141.278 0.012 141.267 0.004
22 141.667 141.907 0.169 141.681 0.010 141.671 0.003
23 148.171 148.402 0.156 148.181 0.007 148.173 0.001
24 148.908 149.098 0.128 148.921 0.009 148.910 0.001

Tab.1: Comparison of rotor eigenfrequencies with different condensation level of disks

and two kinds of blades. Blades of the first type are mounted to disk by a rigid joint.
A rigid shroud is placed at the end of the second type of blades. Friction elements are
placed between shrouds. Each type of blades is separated into two sets (2×25 blades of the
first type, 2×5 blades of the second type), which create bladed disk with two perpendicular
axis of symmetry. There are 2×4 friction elements in the both sets of the second type of
blades.

Total number of DoF of the fixed disk is nD = 7200 from that n
(F)
D = 2880 and

n
(C)
D = 4320. The 60 blades and 8 friction elements are described by using nB = 2208 DoF.

Imperfect bladed disk is represented by n = n
(F)
D + nB = 5088 DoF.

In the table 1 the three condensation levels of non-rotating bladed disk are compared for
the 24 lowest eigenfrequencies. In the first column the eigenfrequencies of the non-condensed
(referential) model with n = 5088 DoF number is placed. The other columns correspond
to condensed models with c = 20, 80, and 320 DoF number corresponding to the lowest
eigenmodes of isolated disk. The total number of DoF of condensed models is 2228, 2288
and 2528 for corresponding level of condensation.

The first eight eigenfrequencies correspond to eigenmodes where only friction elements
oscillate in the direction of axis of rotation. A deformation of the disk is involved in the
rest of eigenmodes. Each eigenfrequency of condensed models is characterized by relative
error ε. Relative errors decrease with decreasing condensation level (DoF number c in-
creases). However, the highest condensation level c = 20 is sufficient because the relative
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Fig.2: Comparison of the chosen 9th eigenmode of the
referential and condensed model of the rotor

Fig.3: Comparison of the chosen 12th eigenmode of the
referential and condensed model of the rotor

errors are below 0.4 %. Two eigenmodes are compared in Figs 2 and 3. The referential
eigenmode is on the left side and the corresponding eigenmode of the condensed model with
c = 20 is on the right side. There is minimal difference between corresponding mode shapes.

The dependency of eigenfrequencies on rotor speed is shown in the diagram (see Fig. 4) for
9th to 17th eigenfrequencies and for rotor speed up to 3000 rpm. Two levels of condensation
are compared to the non-condensed bladed disk. The blade centrifugal stiffening effect
represented by matrix ω2 Kω influences the eigenfrequencies mostly. The eigenfrequencies
are less affected by gyroscopic and dynamic spin softening effects.

5. Conclusion

The paper deals with a modeling of rotating bladed disk vibrations with flexible disks
that are ideally fixed to outer shaft surface. The blades are modeled as a one dimensional
continuum on the basis of the Bernoulli-Euler theory. The disk is modeled as a three
dimensional continuum discretized using isoparametric hexahedral solid finite elements. The
presented new analytical numerical approach is based on the modal synthesis method and
DoF number reduction corresponding to elastic displacements of the free disk nodes. The
displacements of the coupled disk nodes with the blade feet are eliminated by means of the
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Fig.4: Eigenfrequencies of the imperfect bladed disk in dependence on rotor speed

first blade nodes displacements at blade roots. The method allows to introduce continuous
displayed centrifugal and gyroscopic effects. The condensed model of the system can be used
effectively for other types of simulations (e.g. steady state harmonic response, dynamical
response to excitations of the blades) and estimations of damping and stiffness parameters
of friction elements. This approach gives possibilities to use model of a disk with high DoF
while preserving lower requirements on CPU and memory. From an assesment of the modal
assurance of condensed models follows that the developed software in MATLAB code based
on the presented methodology is an effective tool for modeling bladed disk vibrations.

Acknowledgement

This work was supported by GA CR in the project No. 101/09/1166 ‘Research of the
dynamic behaviour and optimization of complex rotating system with non-linear couplings
and high damping materials’.
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