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THICK LIQUID FILM INSTABILITY MODEL
USING CFD SIMULATIONS

Stanislav Knotek*, Miroslav J́ıcha*

The article presents a liquid film instability model designed using results of the set
of CFD simulations. The governing equations of the model are derived using a linear
equation of motion. The stability analysis is carried out by imposing a liquid surface
disturbance which growth rate is investigated in dependence on the geometrical and
physical configuration. The gas effect parameters, which are decisive variables in the
model, are derived using results of the set of CFD simulations of turbulent flow in
channel with wavy surface. The agreement between predicted and measured critical
gas velocities and wavelengths in dependence on the liquid film thickness is very good.
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1. Introduction

The liquid film sheared by gas flow in a horizontal enclosed channel has been broadly
studied from half of twentieth century. From experimental studies published among others
in [1], [2] and later for example in [3], it is well known that a number of different wave forms
is generated on the liquid surface in dependence on the air velocity and the film thickness,
eventually on the liquid flow rate. Using the measured data, so called wave regime map
can be created such as is depicted in Fig. 1 using the experimental observations of Craik
published in [2].

Fig.1: Maximum air velocity plotted against thickness of
water film for the three transitions; taken from [2]
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The figure shows that except the stable regime three wave types were observed. Typically,
two or three dimensional waves cover the surface in dependence on the air velocity. However,
for the liquid height lower than about 0.5mm, so called slow waves appear. These long
crested non-periodic waves define a third unstable regime which is generally observed for
high air velocity and named solitary or capillary waves in dependence on the film thickness.

Given the various type of liquid film instabilities just mentioned, we have focused in this
study only on the investigation of the conditions leading to the transition between the stable
mode and two-dimensional waves on films with thickness larger than about 0.5mm.

2. Methods

Simultaneously with the first experimental findings, the mathematical models of the
initial instability as well as transitions between the wave regimes had been developed. The
most used attitude is based on the linear analysis of the temporal growth of liquid surface
fluctuations and the so called ‘quasi-static’ approximation which says that for large density
and viscosity ratios between gas and liquid the wavy liquid surface can be considered as
solid. Although there is uncertainty about how large these ratios must be, it is commonly
assumed that the approximation is valid for air – water configuration.

2.1. Mathematical backgrounds of the linear analysis

The linear analysis of the liquid film instability is based on the Reynolds decompositions
of the physical quantities into average and fluctuation parts. The liquid film displacement
h′ from its time averaged location h̄ is defined in the form

h′ = a exp{i α (x − C t)} = a exp(α CI t) exp{iα (x − CR t)} , (1)

where a is the amplitude of the disturbance, x is the distance in the flow direction, α = 2π/λ

is the wavenumber defined by the wavelength λ and C = CR + i CI is the complex wave
velocity. Given the formula (1), the interfacial disturbances are assumed as harmonic waves
which propagate with phase velocity CR and grow if CI > 0. The most rapidly growing
disturbance is the one for which α CI is a maximum and the so called neutral stability
condition CI = 0 defines the desired transition from a stable to an unstable film.

The amplitude of the wave is assumed small enough that it induced a linear response in
the velocity, shear stress and pressure field in the liquid. Thus, the wall shear stress and
pressure fluctuations induced by a gas flow on the liquid surface are defined by

τ ′
w = a τ̂w exp{iα (x − C t)} , (2)

P ′
w = a P̂w exp{iα (x − C t)} , (3)

where τ̂w = τwR +i τwI and P̂w = PwR +i PwI are complex quantities. Hence, if only the real
parts of (2) and (3) are considered, we get

τ ′
w = a exp(α CI t) [τwR cosα(x − CR t) − τwI sin α(x − CR t)] , (4)

P ′
w = a exp(α CI t) [PwR cosα(x − CR t) − PwI sin α(x − CR t)] . (5)

If the disturbances defined this way are introduced into the equations of motion, the eigen-
value problem for the wave velocity C is obtained. For more details see [4].
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2.2. Governing equations

As stated Hanratty in [4], the linear stability analysis outlined in 2.1 leads for relatively
thick liquid films, i.e. if (α h̄)(h̄ CR/νL) is a large number, and under some other restric-
tions into the two equation system (6)–(7) in which ū0 denotes the surface velocity, g the
acceleration of gravity and �L, νL and σ denote liquid density, viscosity and surface tension
respectively.
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dy
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The equations for wave phase velocity CR and growth rate CI are obtained by separately
equating the real and imaginary parts of (6), keeping only terms of the highest order in
(h̄ CR/νL) as is stated in [4]. The resulting equations have the forms :
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(CR − ū0)2 + C2
I

]
,

(8)

PwI

�L
+

τwR

α �L

[
α coth(α h̄) +

CR − ū0
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θ =
1
2

tan−1 CI

CR
. (10)

In order to solve the governing equations (8)–(10), the liquid velocity ū0 and the velocity
gradient dū/dy|0 evaluated at the average location of the interface are necessary to deter-
mine. Supposing the linearity of the liquid film velocity profile, the velocity gradient equals
to ū0/h̄ and therefore the shear stress on the interface can be computed by

τ = μL
du

dy

∣∣∣∣
0

∼= μL
ū0

h̄
. (11)
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According to [2], the mean air velocity profile which obeys the 1/7th power law, see [5], leads
to formula

Umax

uτ
= 8.74

(
H uτ

2 νG

)1/7

, (12)

where uτ =
√

τ/�G is the friction velocity. By substituting (11) into (12) we get the
dependence of the liquid surface velocity on the maximum air velocity Umax and channel
height H given by

ū0 =
(

Umax

8.74

)7/4(2 νG

H

)1/4
h̄ �G

μL
. (13)

2.3. Prediction of gas effects

In order to solve the governing equations, the gas effect on the liquid surface manifested
in τw (τwR, τwI) and Pw (PwR, PwI) has to be substituted. Although some models of these
quantities are developed in literature in dependence on channel height H , wavenumber α

and gas bulk velocity Ub, e.g. in [1], [4], [6], we decided to design new simple algebraic models
using CFD simulations, because of the complexity or the limited applicability of existing
models.

Because of the ‘quasi-static’ assumption, the gas effect can be computed as the wall
shear stress and pressure forces acting on the solid wavy surface induced by turbulent flow.
Therefore, we have created a set of two-dimensional geometries representing a rectangular
channel with flat upper wall and sinusoidal lower wall as is depicted in Fig. 2. The channel
height was set H/λ = 0.6, 0.8, 1.0, 1.2, 1.4 and the wave steepness ratio λ/α was set in range
from 20 to 200 while the wavelength λ has been set as a constant equal to 5 cm. The bulk
velocity Ub was prescribed in range from 2 to 20m/s which should sufficiently cover the
conditions of considered instabilities occurrence.

Fig.2: Computational domain for gas effect prediction

Using the results of the set of so defined CFD simulations computed by k-ε V2F turbu-
lence model, the gas effects have been quantified by relations (14)–(17).

τwR = 0.214 H−0.219 (λ/α)−1.080 U1.530
b /a , (14)

τwI = 0.070 H−0.263 (λ/α)−0.920 U1.720
b /a , (15)

PwR = −0.594 H−0.357 (λ/α)−0.914 U2.240
b /a , (16)

PwI = 21.532 H−0.124 (λ/α)−1.552 U1.550
b /a . (17)
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3. Results and discussion

The solution of governing equations (8)–(10) defines the growth rate α CI depending on
wavenumber α, liquid film height h, channel height H , gas velocity Ub and physical constants.
Unfortunately, the model is not closed because the specification of the wave amplitude is
needed for the gas effects prediction. According to [3], the ratio a/h̄ is less than 0.5 for gas
Reynolds numbers less than 104 and this ratio decreases with decreasing ReG. Hence, we
set a/h̄ = 1/3 for the instability area determination.

From the dependence of the growth rate α CI on the wavenumber α, see Fig. 3, the
wavelength which induced the most growing disturbance can be determined. As can be seen
from Fig. 4 and Fig. 5 this wavelength is very close to the experimental observations.

The comparison of maximum growth locus with solution of Frederick [7] computed using
model D* of Abrams [6] shows that our model give better prediction of observed conditions

Fig.3: Dependence of the growth rate α CI on the wavenumber α; geometrical
and physical conditions are defined by H = 25.4 mm, h̄ = 4.5 mm,
ReG = 3000, μL = 3.9 mPa s and νG = 1.66×10−5 m2s−1

Fig.4: Comparison of instability area and maximum growth locus with solution of
Frederick [7] based on model D* of Abrams [6] and with experimental observa-
tions of Cohen & Hanratty [1]; Geometrical and physical conditions are defined
by H = 25.4 mm, h̄ = 4.5 mm, μL = 3.9 mPa s and νG = 1.66×10−5 m2s−1
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Fig.5: Comparison of instability area and maximum growth locus with solution of
Frederick [7] based on model D* of Abrams [6] and with experimental observa-
tions of Cohen & Hanratty [1]. Geometrical and physical conditions are defined
by H = 25.4 mm, h̄ = 4.9 mm, μL = 0.9 mPa s and νG = 1.60×10−5 m2s−1

Fig.6: Comparison of this study prediction of transition to two-dimensional
waves with experimental data of Cohen & Hanratty in [1] and Craik
in [2]; both experiments were carried out in 2.54 high and 30.5 cm
wide horizontal enclosed channel

measured by Cohen & Hanratty [1] for both of two different settings described in labels
of Fig. 4 and Fig. 5. However, the instability areas defined by α CI > 0 are larger and the
critical Reynolds numbers (gas velocities) are lower in both cases. This can be explained by
the fact that for so low Reynolds numbers when first instability occurs, the wave amplitude
must be much lower than h̄/3. Very good agreement of the critical gas velocities for different
liquid film heights with experimental observations of Cohen & Hanratty [1] was attained for
a/h̄ = 1/8 as is shown in Fig. 6.

Note that the model is applicable only for film thickness larger than about 2.3mm due
to the restrictions of the governing equations mentioned in 2.2. It should by also noted that
the measurements of Cohen & Hanratty [1] are slightly inconsistent with transition observed
by Craik [2] in Fig. 1 as can be seen from comparison in Fig. 6. The discrepancy is even
larger with regard to the fact that in case of Craik the maximum velocities were measured
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and not bulk velocities as in case of Cohen & Hanratty. Unfortunately, the reason of this
inconsistency is unclear.

The wavelengths corresponding to the critical conditions in Fig. 6 are shown in Fig. 7. The
resulting wavelengths ranged from 1.7 to 2.4 cm are quite well consistent with experimental
observations of Cohen & Hanratty [1] who state wavelength from 2.2 to 3 cm. However the
increase of the wavelengths with decreasing liquid height is in disagreement with observations
for thin liquid film (h̄ < 1.6mm) of Craik [2] who report wavelengths from 1 to 2 cm. This
result supports the conclusion that the prediction of wavelengths is not adequate for liquid
film thinner than about 3 mm.

Fig.7: Wavelength corresponding to the critical conditions for instability occurrence

Fig.8: Phase velocity and liquid surface velocity corresponding
to the critical conditions for instability occurrence

The phase velocity and liquid surface velocity are depicted in Fig. 8. The phase velocity
has the value of about 0.25m/s while Cohen & Hanratty [1] state the value of about 0.3m/s.
However, our result agrees well with the analytical formula (18), see [8], for phase velocities
of surface tension depending gravity waves.

cR =

√(
g λ

2π
+

2π

�L λ

)
tanh

2π H

λ
. (18)

The liquid film surface velocities are less than the phase velocities in all cases, which is
consistent with experiments, however there is lack of data for more precise comparison.
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4. Conclusions

The liquid film stability model based on the linear analysis of momentum equations and
gas effects computed using results of CFD simulations is presented. Taking into account the
‘quasi-static’ assumption, the gas effect on the liquid film has been computed as the wall
shear stress and pressure forces acting on the solid wavy surface. Although some models
of these quantities are developed in literature, we decided to design new simple formulas,
because of the complexity or the limited applicability of existing models. Using the results
of the set of properly defined CFD simulations computed by k-ε V2F turbulence model, the
gas effects have been quantified by algebraic relations. By substitution of these formulas
into the governing equations of motion the desired instability model was closed. Using so
defined mathematical model, the critical gas velocity, wavelength and wave phase velocity
can be predicted in dependence on average liquid film height h̄, channel height H and
physical constants. As a consequence of the linearity assumptions, the model is usable for
film height thicker than about 2.3mm. The weakness of the model lies in the fact that the
ratio of the wave amplitude to the average liquid film height must be determined. However,
using the assumption a/h̄ = 1/3, the prediction of the maximum growth locus is very
good in comparison with experimental observations carried out for two types of geometrical
and physical conditions. The precision of the critical gas prediction is depending on the
wave amplitude determination. If the ratio a/h̄ was set to 1/8, excellent agreement with
experiments of Cohen & Hanratty [1] was achieved. The wavelengths, phase and liquid
surface velocities agree well with the experimental observations and analytical formula for
gravity waves.
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