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FREQUENCY AND TIME VARIABLE PARAMETRIC
FORCES IN A GENERALIZED LINEAR AERO-ELASTIC

MODEL WITH TWO DEGREES OF FREEDOM

Jǐŕı Náprstek, Stanislav Posṕı̌sil*

Behavior of slender aero-elastic systems in a sub-critical domain including position
of the lowest critical state is commonly investigated using double degree of freedom
(DDOF) linear model. The most frequently used are neutral models treating aero-
elastic forces as certain constants corresponding to system parameters and stream
velocity. Although this approach is working well, it shows a number of shortcomings.
For this reason modeling by flutter derivatives or indicial functions has been launched.
However, these two groups of models have been developed separately one from each
other. It seems they are rather isolated until now. Moreover they mostly suffer from
various gaps in mathematical formulations and further treatment. The paper tries
to put all three groups together on one common basis and to demonstrate linkage
of them. This approach allows formulate more sophisticated models combining main
aspects of all groups in question keeping the DDOF basis. These models correspond
by far better to results of wind channel and full scale measurements.

Keywords : flutter derivatives, indicial functions, non-symmetric systems, dynamic
stability

1. Introduction

Slender prismatic structures exhibited to strong dynamic wind effects (bridge decks,
towers, chimneys, etc.) are frequently analyzed using a double degree of freedom (DDOF)
linear model working with heaving and torsional components of a cross-section, see e.g. [1].
This aero-elastic model is often adequate to study the system response until the first critical
state is reached. Relevant mathematical models appearing in literature differ in principle
by way of composition of aero-elastic forces. This criterion enables to sort them roughly
in three groups. The first group can be possibly called neutral models – aero-elastic forces
are introduced as suitable constants independent from excitation frequency and time. The
second one involves flutter derivatives – they respect the frequency dependence of aero-elastic
forces, see [13].

Finally the third is working with indicial functions – they are defined as kernels of
convolution integrals formulating aero-elastic forces as functions of time, see [16], [7], [5]
and [14]. Second and third groups have been developing separately from each other and
seem to be isolated until now, see [2] and [3] for example. Moreover they mostly suffer from
various gaps in mathematical formulations and further treatment. The paper tries to put
all three groups together on one common basis and to demonstrate linkage of them. This
approach allows formulate more sophisticated models combining main aspects of all groups
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keeping the DDOF basis. These models correspond by far better to results of wind channel
and full scale measurements and seem to be very promising for the future investigation and
practical applications.

In principle all types of above models have been investigating many years. Each of
them has its advantages and shortcomings. However most of them suffer very often from
mathematical gaps preventing their generalization and synthesis on formal basis in order to
identify some special phenomena remaining hidden when dealing with heuristic approaches
only. Let us characterize now briefly the groups of models mentioned above in forthcoming
parts.

2. Neutral models

Neutral models are relatively the most simple and enable to provide many results analy-
tically in a form of closed solution. These models have been extensively studied for instance
in [11]. An outline of the cross-section which is undergone to analysis can be seen in Fig. 1.

Although there exist many versions of a basic formulation, in principle the most general
model of neutral type can be expressed in the form :

ü + bm · u̇ − h q · ϕ̇ + ω2
u · u − p · ϕ = 0 ,

ϕ̈ + q · u̇ + bI · ϕ̇ + g p · u + ω2
ϕ · ϕ = 0

(1)

where we have denoted: ω2
u, ω2

ϕ – total natural-frequencies in relevant components including
stiffness and aero-elastic components; bm, bI – total damping parameters including internal
structural damping and aero-elastic contribution; q [(ms)−1] or p [m s−2] gyroscopic or non-
conservative forces of aero-elastic origin respectively; g [m−2], h [m2] auxiliary constants
serving for dimensional compatibility of the above equations (they can be regarded as certain
characteristics of the cross-section).

Fig.1: Schematic DDOF model of a bridge symmetric
cross-section under wind loading

Parameters q, p in general don’t include any static components which follow from elastic
properties of the system itself, they consist only of aero-elastic terms vanishing for zero
velocity of the air stream. So for stream velocity V = 0, the system (1) degenerates in two
independent equations.

The main tool for stability investigation is, together with the system (1), its characteristic
equation :

D = λ4 + λ3 (bm + bI) + λ2 (ω2
u + ω2

ϕ + bm bI + h q2) +

+ λ (ω2
u bI + ω2

ϕ bm + (1 + g h) p q) + ω2
u ω2

ϕ + g p2 = 0 .
(2)



Engineering MECHANICS 357

The resulting characteristic equation represents annuled polynomial of the fourth order
(n = 4) with roots λ1, λ2, λ3 and λ4. The trivial solution of system (1) is stable only
if a real part of all four roots is negative. In other words, stability limits are given by
conditions :

Re(λi) = 0 , i ∈ (1, . . . , 4) . (3)

Consequently, the trivial solution of system (1) is stable in a domain representing an inter-
section of sub-domains Re(λi) < 0, i ∈ (1, . . . , 4).

The system (1) and the characteristic equation (2) can provide a lot of information
regarding motion stability, critical velocities Vcrit, system response on stability limits, etc.
Consequently, it enables to predict flutter/divergence onset velocity as well as to estimate
their shapes in a particular case. However aero-elastic coefficients in Eqs (1) are introduced
as constants corresponding to certain conditions ruling around the cross-section. Anyway,
these coefficients are functions of V and ω, and therefore some iterative process should follow
balancing these effects in order to harmonize velocity V with velocity Vcrit. Despite these
shortcomings the applicability of neutral models is quite wide if the variability of the aero-
elastic terms is approximately linear. Otherwise one of more sophisticated models should
be used, as we will see in next two parts.

Strategy of the stability investigation can be based on Routh-Hurwitz inspection of
Eq. (2). The detailed analysis and relevant results can be found e.g. in [8], [9]. The most
important types of aero-elastic stability loss (flutter and divergence) and their possible in-
teractions are there given together with the conditions of their existence.

3. Models with flutter derivatives

Flutter derivatives have been introduced many years ago, see for instance [15] and more
recently [12]. Their various aspects have been investigated extensively for a long time in the
aircraft, civil and other branches of engineering. They have been introduced as functions
in the frequency domain related to a particular cross-section without any link with other
system parameters (inertia, elastic stiffness, internal damping). Nevertheless they can be
understood as a certain extension of the damping and stiffness matrix elements. Flutter
derivatives can be interpreted as amplitudes Q or M of the heaving forces or the pitching
moments, respectively, which should reach a unit amplitude of one response component
under harmonic external kinematic excitation, while remaining components are kept zero in
the same time. Thus the flutter derivatives are the dimensionless functions of the excitation
frequency ω, stream velocity V and geometric characteristic of the cross-section B [m]. They
are combined in one dimensionless argument κ = B ω/V . So the basic relations between
kinematic and force components can be roughly outlined :

u̇ u ϕ̇ ϕ
Q : H1(κ) H4(κ) H2(κ) H3(κ)
M : A1(κ) A4(κ) A2(κ) A3(κ)
Q : A11(κ) A12(κ) A13(κ) A14(κ)
M : A21(κ) A22(κ) A23(κ) A24(κ)

, κ =
B ω

V
(4)

where following notation has been introduced : Hi(κ) or Ai(κ) – amplitudes of flutter deriva-
tives corresponding to heaving forces Q or pitching moments M amplitudes due to indivi-
dual sets of unit kinematic harmonic excitations of a proper cross-section in an aerodynamic
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tunnel (notation and indexing corresponds to literature referenced); Aij(κ) – alternative
notification of flutter derivatives assigned with respect to the table in Eq. (4).

Since we try to write down final formulae of Q or M amplitudes, there appear expressions
of the type κ A11(κ) · u̇(t), κ A23(κ) · ϕ̇(t), etc. They are to see everywhere since classical
until contemporary literature, e.g. [13] and many others. However, they are inconsistent
mixing both frequency and time variables together. Subsequent integral transform would be
unapplicable. Therefore respecting harmonic regime of the flutter derivatives (functions of ω)
also displacements u(t), ϕ(t) and their time derivatives should be expressed correspondingly,
for instance in the form of their Fourier transform. It means in particular as iω U , U , i ω Φ, Φ.
So that with reference to notification (4) the heaving and pitching aero-elastic forces in the
frequency domain can be written as follows :

Q(ω) = μm V 2

(
i ω B

V
κ A11 + κ2 A12

)
U +

+ μm V 2

(
i ω B2

V
κA13 + κ2 B A14

)
Φ ,

M(ω) = μI V 2 B2

(
iω
V

κ A21 +
1
B

κ2B A22

)
U +

+ μI V 2 B2

(
i ω B

V
κ A23 + κ2 A24

)
Φ ,

μm =
�

m
,

μI =
2 �

I

(5)

where m or I are a mass or mass inertia moment of the vibrating body and � is a specific
mass of the air.

Fig.2: Outline of flutter derivatives; rectangular cross-section, ratio 1:5; position of
A11 − A24 pictures correspond with table in Eq. (4); the arrow in relations :
H1 → A11, H4 → A24, . . . , A3 → A24 means the correspondence of flutter
derivatives notification in the references and those introduced in this paper

The definition itself of flutter derivatives apparently implicates that they can serve only
to develop a linear mathematical model as their application is based on the superposition
principle. Flutter derivatives can be incorporate into the governing equations of type (1)
only if these equations are expressed in the frequency domain. Hence the system (1) should
be written in a form of the two-way Laplace transform (integration t ∈ (−∞, +∞)) to unify
the basis of individual parts. Transformation exists if the system is stable and therefore
influence of initial conditions disappear with increasing time. It means, however, that only
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steady state problems with explicit frequency ω = −iλ can be investigated. Finally we write
the complete system in the frequency domain, so that it has a character of an algebraic
(unknowns U , Φ) system :

Q :

M :

∣∣∣∣∣∣∣
λ2 + λ · (bm + μm V B · κ A11) + (ω2

u + μm V 2 · κ2A12) ;
λ · μm V B2 · κA13 + μm V 2 B · κ2 A14

λ · μI V B2 · κA21 + μI V 2 B · κ2 A22 ;
λ2 + λ · (bI + μI V B3 · κ A23) + (ω2

ϕ + μI V 2 B2 · κ2 A24)

∣∣∣∣∣∣∣ ·
∣∣∣∣∣∣
U

Φ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0

0

∣∣∣∣∣∣ . (6)

The shape of flutter derivatives for the rectangular cross-section as they are plotted in
Fig. 2 is commonly accepted. Let us go briefly through individual graphs in this figure. It
can be observed that functions Aij related with u̇, ϕ̇ are odd functions, while those related
to u, ϕ are even with respect to the vertical axis. Indeed this fact can be shown also
theoretically using Theodorsen functions, see [15]. Looking through Fig. 2, it is obvious that
the courses of individual Aij are not ‘dramatic’. Hence with respect to the interval length
needed on the 1/κ axis, only the first and the second terms of the odd or even polynomial
expansions seems to be satisfactory to characterize Aij in equations (6). Thus for instance :

A11 ≈ a11
1
κ

+ b11
1
κ3

, A12 ≈ a12
1
κ2

+ b12
1
κ4

, etc. (7)

where aij and bij are relevant dimensionless coefficients of the polynomial expansion. These
coefficients can be obtained fitting relevant polynomials into experimental results.

Let us note that function values of A12 and A22 are markedly small, when dealing with
a symmetrical cross-section. Supposing perfectly uniform stream velocity in a wind tunnel,
A12 and A22 should vanish identically. Their non-zero values presented in Fig. 2 are most
probably the results of imperfections ruling in experiments. Despite this fact, these terms
have been included to keep theoretical consistency of relevant matrices (many papers omit
those and work with six derivatives only).

Let us introduce polynomial expansions Eqs (7) into Eqs (6). Being aware that ω2 = −λ2,
one obtains :

Q :
M :

∣∣∣∣ q11 q12

q21 q22

∣∣∣∣ · ∣∣∣∣UΦ
∣∣∣∣ = ∣∣∣∣ 00

∣∣∣∣ , (8)

q11 =
(
λ2 + λ (bm + μm V B a11) + (ω2

u + μm V 2 a12)
)− μm

(
1
λ

V 3

B
b11 +

1
λ2

V 4

B2
b12

)
,

q12 = (λμm V B2 a13 + μm V 2 B a14) − μm

(
1
λ

V 3 b13 +
1
λ2

V 4

B
b14

)
,

q21 = (λμI V B2 a21 + μI V 2 B a22) − μI

(
1
λ

V 3 b21 +
1
λ2

V 4

B
b22

)
,

q22 =
(
λ2 + λ (bI + μI V B3 a23) + (ω2

ϕ + μI V 2 B2 a24)
)− μI

(
1
λ

V 3 B b23 +
1
λ2

V 4 b24

)
.

(9)

The neutral models following Eqs (1) include system parameters, which implicitly incorpo-
rate the influence of surrounding air, for instance bm = bm,syst + bm,air, etc. Depending on
a strategy of a particular analysis the additional part bm,air is subsequently considered as
a function of the stream velocity V , but any relation with the frequency ω is always omit-
ted. Anyway, terms containing coefficients aij in Eqs (9) can be considered as a certain ‘first
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approximation’, e.g. bm,air = μm V C a11, ω2
u,air = μm V 2 a12, etc. So that respecting terms

with aij , one obtains result analogous with the neutral model Eqs (1), where the dependence
on the stream velocity V is obvious approaching zero with V → 0. It is apparent, see Fig. 2,
that aij can be positive or negative. Therefore introduction of terms with aij can result
(on the level of the ‘first approximation’) in an increase or a decrease of effective system
parameters due to the aero-elastic effects. In particular non-conservative and gyroscopic
character of the system follows solely from these terms as the system itself doesn’t contain
extra-diagonal elements. Non-symmetric character of the system results from character of
aij signs :

a13 < 0 , a14 < 0 , a21 > 0 , a22 > 0 (10)

and therefore symbolical link of some coefficients in Eqs (1) and elements specified in Eqs (9)
can be written :

−p = μm V 2 B a14 < 0 , g =
μI a22

μm a14
< 0 , g p = μI V 2 B a22 > 0 ,

q = μI V B2 a21 > 0 , h =
μm a13

μI a21
< 0 , −h q = μm V B2 a13 < 0 .

(11)

Coefficients bij represent the most simple quantification of the frequency ω influence within
aero-elastic forces, see Eqs (9). Looking over Fig. 2 we can see, that the second terms in
expansions Eqs (7) arithmetized by coefficients bij can be considered significantly smaller
especially for rising ω.

Nevertheless, let us focus to a main step of the dynamic stability analysis. Provided the
matrix of the system Eq. (8) is multiplied by a factor λ2, the condition of the stability gets
a form of the characteristic equation of the eight degree of the parameter λ :

a0 λ8 + a1 λ7 + a2 λ6 + a3 λ5 + a4 λ4 + a5 λ3 + a6 λ2 + a7 λ + a8 = 0 (12)

a0 = 1 , (a)

a1 = (bm + bI) + (μV B a11 + μI V B3 a23) , (b)

a2 = (ω2
u + ω2

ϕ + bm bI) + (μm V 2 a12 + μI V 2 B2 a24 + bm μI V B3 a23 + (c)
+ bI μm V B a11 + μm μI V 2 B4 (a11 a23 − a13 a21)) ,

a3 = bm ω2
ϕ + bI ω2

u + μm ω2
ϕ V B a11 + μI ω2

u V B3 a23 + μI bm V 2 B2 a24 + (d)
+ μm bI V 2 a12 + μm μI V 3 B3 (a11 a24 + a12 a23 − a13 a22 − a14 a21) −
− μI V 3 B b23 − μm

V 3

B b11 ,

a4 = ω2
u ω2

ϕ + μm ω2
ϕ V 2 a12 + μI ω2

u V 2 B2 a24 + μm μI V 4 B2 (a12 a24 − a14 a22) + (e)
+ μm μI V 4 B2 (−a23 b11 − a11 b23 + a21 b13 + a13 b21) −
− μI bm V 3 B b23 − μm bI

V 3

B b11 − μI V 4 b24 − μm
V 4

B2 b12 ,

a5 = μm μI V 5 B (−a11 b24 − a23 b12 − a12 b23 − a24 b11 + (f)
+ a14 b21 + a22 b13 + a13 b22 + a21 b14) −
− μI bm V 4 b24 − μm bI

V 4

B2 b12 − μI ω2
u V 3 B b23 − μm ω2

ϕ
V 3

B b11 ,

a6 = μm μI V 6 (−a12 b24 − a24 b12 + a14 b22 + a22 b14) − (g)
− μI ω2

u V 4 b24 − μm ω2
ϕ

V 4

B2 b12 + μm μI V 6 (b11 b23 − b21 b13) ,

a7 = μm μI
V 7

B (−b14 b21 − b13 b22 + b11 b24 + b12 b23) , (h)

a8 = μm μI
V 8

B2
(b12 b24 − b14 b22) . (i)

(13)
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As it has been mentioned terms containing bij are relatively small and represent a certain
‘correction’ of the main part which is given by terms with aij . Moreover bij related with u̇, u

are even significantly smaller than those related with ϕ̇, ϕ. So it can be put approximately :
b11 ≈ 0, b12 ≈ 0, b21 ≈ 0, b22 ≈ 0. Therefore in Eqs (13) coefficients a7, a8 = 0 and a3–a6

get simpler. Roots λ7, λ8 �= 0 and hence the remaining part of the characteristic equation
Eq. (12) can be divided by λ2. Finally the degree of the characteristic equation drops from
eight to six. Thus let us rewrite this one together with a0–a6 :

a0 λ6 + a1 λ5 + a2 λ4 + a3 λ3 + a4 λ2 + a5 λ + a6 = 0 , (14)

a0 = 1 , (a)

a1 = (bm + bI) + (μm V B a11 + μI V B3 a23) , (b)

a2 = (ω2
u + ω2

ϕ + bm bI) + (μm V 2 a12 + μI V 2 B2 a24 + bm μI V B3 a23 + (c)
+ bI μm V B a11 + μm μI V 2 B4 (a11 a23 − a13 a21)) ,

a3 = bm ω2
ϕ + bI ω2

u + μm ω2
ϕ V B a11 + μI ω2

u V B3 a23 + (d)
+ μI bm V 2 B2 a24 + μm bI V 2 a12 +
+ μm μI V 3 B3 (a11 a24 + a12 a23 − a13 a22 − a14 a21) − μI V 3 B b23 ,

a4 = ω2
u ω2

ϕ + μm ω2
ϕ V 2 a12 + μI ω2

u V 2 B2 a24 + μm μI V 4 B2 (a12 a24 − a14 a22) + (e)
+ μm μI V 4 B2 (−a11 b23 + a21 b13) − μI bm V 3 B b23 − μI V 4 b24 ,

a5 = μm μI V 5 B (−a11 b24 − a12 b23 + a22 b13 + a21 b14) − (f)
− μI bm V 4 b24 − μI ω2

u V 3 B b23 ,

a6 = μm μI V 6 (−a12 b24 + a22 b14) − μI ω2
u V 4 b24 . (g)

(15)

Although Eq. (14) is approximate only, it is obvious that higher degree of the stream
velocity influence is focused rather on the rotating component and its velocity : ϕ, ϕ̇,
while heaving component and its velocity corresponds rather with the neutral model in
Eqs (1). The structure of Eqs (15) suggests some more possible simplifications canceling
remaining bij . Such step would lead to full analogy with the neutral model (1).

4. Generalized Routh-Hurwitz method

Dynamic stability of MDOF systems is closely related with eigen values of the char-
acteristic matrix. If their real parts are all negative, the system is stable. To carry-out
a general and careful analysis, a strategy based on an inspection of the characteristic poly-
nomial P (λ) is preferable. In such a case properties of the characteristic matrix are reflected
in polynomial roots. So that limits separating their negative and positive real part values
should be found. A numbre of methods for searching these limits is based on properties of
the Hurwitz matrix H ∈ �

n×n and its diagonal sub-determinants. To find out zero value
of sub-determinants and respective stability limits, Routh-Hurwitz (RH) conditions can be
used: Δi > 0. They are satisfactory and therefore giving unique results. For a rigorous
mathematical proof, see monographs, e.g. [4].

However, when an analytic investigation is necessary, then to use solely sub-determinants
Δi in an analytic form is realistic until let say n = 4. Nevertheless RH conditions can be
combined with Descartes rule. This theorem requests positive value of all coefficients of the
characteristic polynomial, for instance Eq. (12), i.e. ai > 0, to keep real part of all roots nega-
tive. Because Descartes rule represents the set of necessary and not satisfactory conditions,
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it should be combined with RH conditions. The combination of both approaches makes
possible to simplify the stability analysis process, as polynomial coefficients are incomparably
simpler than RH sub-determinants. Putting both sets together it can be shown that many
of particular conditions are consequences of the others. Therefore as much minimized set of
satisfactory conditions as possible should be selected. This selection can be done by sight
until n = 4. For higher degree of a polynomial a formalized tool is necessary.

One possibility of an effective selection is offered by Liénard theorem. It is based on
a knowledge that fulfilling conditions ai > 0, then RH conditions are no more independent.
For instance at n = 4 only one condition Δ3 > 0 is independent. With reference to [4] where
the proof and other mathematical details can be found, we provide only instructions of the
theorem application. Relevant conditions of negative real parts of polynomial roots can be
formulated in one of four versions (Liénard theorem) :

(a) an > 0 , an−2 > 0 , . . . , Δ1 = a1 > 0 , Δ3 > 0 , . . .
(b) an > 0 , an−2 > 0 , . . . , Δ2 > 0 , Δ4 > 0 , . . .
(c) an > 0 , an−1 > 0 , an−3 > 0 , . . . , Δ1 = a1 > 0 , Δ3 > 0 , . . .
(d) an > 0 , an−1 > 0 , an−3 > 0 , . . . , Δ2 > 0 , Δ4 > 0 , . . .

(16)

It follows from formulations Eq. (16) that positivity either of all coefficients ai or one of
subsets an, an−2, . . . , an, an−1, an−2 invalidates the full independency of the RH conditions.
Namely positiveness of the odd RH sub-determinants implicates positiveness of the even RH
sub-determinants and vice versa.

Let us demonstrate the above algorithm for a system n = 4. Respective condition sets
read :

coefficients : a0 > 0 , a1 > 0 , a2 > 0 , a3 > 0 , a4 > 0 , (a)
sub-determinants : Δ1 = a1 > 0 , Δ2 = a1 · a2 − a3 · a0 > 0 , (b)

Δ3 = a3 · Δ2 − a4 · a2
1 > 0 , Δ4 = a4 · Δ3 > 0 .

(17)

The condition Δ1 > 0 is included in Eq. (17a), condition Δ2 > 0 must be fulfilled if Δ3 > 0
should be in force and Δ4 > 0 follows from Eqs (17a) and Δ3 > 0. Thus if conditions (17a)
are valid then among RH sub-determinants only Δ3 is independent and must be taken into
account. So we can see, that such arrangement of conditions comply with the third version
of the Liénard theorem, see Eq. (16c). This set of conditions is popular to process problems
up to n = 4. Anyway, such condition sets can be proceed also by way of visual assemblage.
However problems n ≥ 6, which are under consideration, should be discussed using one
version of the Liénard theorem, see Eq. (16).

Let us try to configure conditions for n = 6. First of all following coefficients of the
polynomial should be positive, see the first half of Eq. (16c) or (16d) :

a0 = 1 > 0 , a1 > 0 , a3 > 0 , a5 > 0 , a6 > 0 (18)

With respect to the second half of Eq. (16c) it should hold:

Δ1 > 0 , Δ3 > 0 , Δ5 > 0 (19)

The condition a0 = 1 > 0 is explicit and therefore conditions a1 > 0 and Δ1 = a1 > 0
are identical. Consequently, considering conditions (18), only sub-determinants Δ3 and
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Δ5 are independent. Together with (18) they make the close set of satisfactory conditions
determining the negative real part of polynomial P (λ) roots for n = 6. For n = 6, respective
sub-determinants have the form as follows :

Δ2 = a1 · a2 − a0 · a3 ,

Δ3 = a3 Δ2 − a2
1 a4 + a0 a1 a5 ,

Δ4 = a4 Δ3 − a2 (a5 Δ2 − a2
1 a6) + a0 (a1 a4 a5 − a0 a2

5 − a1 a3 a6) ,

Δ5 = a5 Δ4 + a1 a5 a6 Δ2 − a3 a6 Δ3 − a3
1 a2

6 ,

Δ6 = a6 Δ5 .

(20)

Redundancy of sub-determinants (20) (or independency of Δ3 and Δ5) when conditions (18)
are taken into account is obvious. Going through Eqs (18) and (20) once again, we can see
that also other versions of Liénard theorem are applicable, in particular (16d).

5. Numerical experiments related to real example

Let us recall conditions (18) and (19) together with Eqs (20). They should be carefully
analyzed. Apparently the most transparent illustration of their character and interaction
can be outlined in the plane ω2

u×ω2
ϕ. With the help of this pictures one can see the influence

of individual parameters on the stability of the basic system while creating limits identifying
the change in stability character. Conditions ai ≥ 0 and Δi ≥ 0, treated usually separately
in the literature have now gained general meaning. Stability conditions may intersect mu-
tually and thus create separated instability domains in which individual generalized forces
need not be necessarily positive due to non-conservative and gyroscopic influences. There-
fore traditionally discussed types of dynamic stability loss appear here as special cases of
one general mechanism treated above. So that going through one can detect all types of
instability dealing with the advanced ‘neutral’ model proposed here.

The Fig. 3 shows the result of the analysis for the rectangular cross-section that has been
analyzed in the wind tunnel. The characteristics of this cross-section is described in Table 1.

mass inertia width frequency frequency damping damping speed speed

m I B ωu ωϕ ζu ζϕ V
(1)
c V

(2)
c

[kg/m] [kgm] [m] [s−1] [s−1] [%] [%] [m/s] [m/s]

4.02 0.0023 0.30 4.900 4.048 0.9 1.3 9.0 8.5

Tab.1: Characteristics of the rectangular cross section and measured values

of critical wind speed; V
(1)
c is taken from the experiments, see [6] and

V
(2)
c results from the presented method respectively

The graphs are actually the stability diagrams for certain value of the wind speed. For
much simpler model that is described in the article by [11] four planar curves divide the
plane into several zones of stability and instability. By using the advanced neutral model
the figure is more complicated, however the stability domains can be also observed. For
example, the a5 divide the plane ω2

u × ω2
ϕ into two semi-planes where the right one is the

stable zone. The Δ4 is the most complicated condition being a result of combination of
various ai including Δ3 and a4, the latter one being a hyperbola with the axis in the second
and fourth quadrant. This is known as a divergence stability conditions, see [11].
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Fig.3: Conditions of stability depicted in the frequency plain, ω2
u × ω2

ϕ

Higher determinants Δ5 and Δ6 create complex parametric curves combining lower order
determinants together, see Eqs (20). For example, in the figure with Δ5, besides the lines,
the parabolic shapes standing for the flutter condition, see [11], are visible. The zone
between those parabolas is the stable one, however with increase of the wind speed V this
zone changes, the parabolic shapes may merge or undergo other transformation so that the
stability domain is narrower in the general term of the word.

The influence of the wind velocity can be seen more transparently at the different type
of diagrams. The Fig. 4 illustrates the use of the described analysis for the evaluation of
the critical wind speed, i.e. the speed when one of the conditions (18) and (19) is violated.
Only the independent conditions are presented. In particular : a1–a6, see Eq. (18) and two
determinants Δ3 and Δ5, see Eq. (19). It can be seen from the Fig. 4 that the condition Δ5
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Fig.4: Course of the some coefficients ai and determinants Δ as function
of velocity V ; the point of the zero crossing at individual coefficients
determines the loss of the stability, which may be of any kind

crosses the zero at the speed V = 8.5m/s. This corresponds quite well to the experimentally
verified value V = 9.0m/s. Obviously, the critical speed depends much upon the measured
value of structural damping.

Generally, the coefficients a5, a6 and the determinants Δ5 and Δ6 are very sensitive
to precise determination of the flutter derivatives, which is usually very complicated task
for both very low values of κ (higher values of the reduced wind velocity V ) as well as for
the values where the reduced frequency is very high. These regions determine the signs of
the coefficients bij , which are used for the fitting of the flutter derivatives. Higher order
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expansion would improve the analysis. On the other hand this improvement would be lost
in doubling of the order of the characteristic polynomial (12).

6. Conclusion

Two types of double degree of freedom (DDOF) linear systems interacting with aero-
elastic forces have been investigated and compared. The DDOF system under study de-
scribes inherent dynamic features of a slender prismatic beam attacked by a cross wind
stream of a constant velocity (long bridge decks, guyed masts, towers, etc.). Mathematical
models of aero-elastic forces appearing in literature differ in principle by way of composition
of aero-elastic forces. So two groups have been investigated: neutral models, where aero-
elastic forces are introduced as suitable constants independent from excitation frequency
and time and models using flutter derivatives for modeling the aero-elastic forces.

The second group respects explicitly the stream velocity and the frequency of the system
response. It succeeded to put both groups together on one common basis to demonstrate
their linkage. The platform of qualitative investigation of aero-elastic critical states in a fre-
quency plain has been significantly expanded with respect to the stream velocity. Memory
effects ruling in aero-elastic DDOF system have been substantiated and compared in fre-
quency and time domains. The approach presented allows to formulate more flexible models
combining main aspects of both groups keeping the DDOF basis. This approach can be
used for the analysis of practical flow-structure interaction problems. However, the atten-
tion should be paid to the precise flutter derivatives measurement, especially in the both
very low and very high frequency domains.
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