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DYNAMIC RESPONSE OF SOIL-STRUCTURE
INTERACTION SYSTEM IN TIME DOMAIN

USING ELASTODYNAMIC INFINITE ELEMENTS
WITH SCALING MODIFIED BESSEL SHAPE FUNCTIONS

Konstantin Kazakov*

This paper is devoted to a new approach to the dynamic response of Soil-Structure
System (SSS), the far field of which is meshed by decay or mapped elastodynamic
infinite elements, based on scaling modified Bessel shape functions to be calculated.
These elements are appropriate for Soil-Structure Interaction problems, solved in time
or frequency domain and can be treated as a new form of the recently proposed elas-
todynamic infinite elements with united shape functions (EIEUSF) infinite elements.
Here the time domain form of the equations of motion is demonstrated and used in the
numerical example. In the paper only the formulation of 2D horizontal type infinite
elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner
(CIE) infinite elements can also be added. Continuity along the artificial boundary
(the line between finite and infinite elements) is discussed as well and the applica-
tion of the proposed elastodynamical infinite elements in the Finite element method
is explained in brief. A numerical example shows the computational efficiency and
accuracy of the proposed infinite elements, based on scaling Bessel shape functions.

Keywords : soil-structure interaction, wave propagation, infinite elements, finite ele-
ment method, Bessel functions, Duhamel integral

1. Introduction

Infinite elements are widely used in the numerical simulations of engineering problems
if unbounded domain exists. Soil-Structure Interaction (SSI) is typical civil engineering
problem [1–5, 13–16]. The infinite elements can be integrated in the Finite element method
codes [8, 14, 21, 22] adequately dynamic SSI simulations to be obtained. The infinite ele-
ments as a computational technology is widely used due to the fact that their concepts
and formulations are much closed to those of the finite elements. These elements are very
effective for models of structures containing a near field discretized by finite elements and
a far field discretized by infinite elements.

The first infinite elements have been proposed in [4] (Bettess) and [20] (Ungless). Clas-
sification of the infinite elements is proposed in [7]. During the last three decades much
element formulations have been suggested [1, 6, 11, 23, 24, 25]. In the last two decades a lot
of dynamic infinite elements were developed, [23, 9, 12].
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2. Elastodynamical infinite element with united Bessel shape functions

The idea and concept of the elastodynamic infinite elements with united shape functions
(for short EIEUSF class infinite elements) are presented in [10, 11, 12]. Several EIEUSF
formulations are discussed and have been demonstrated that the shape functions, related to
nodes k and l (the nodes, situated in infinity, fig. 1, are not necessary to be constructed, be-
cause corresponding to these shape functions generalized coordinates or weights, see eq. (1),
are zeros. The displacements in infinity are vanished, and these shape functions must be
omitted. The theory used for the formulation of the EIEUSF class infinite elements has been
published in detail in [10], and hence only summarize of the basic idea is demonstrated here.
In [11] is mentioned why the EIEUSF class infinite elements are more general and powerful
than the standard infinite elements.

Fig.1: Local coordinate system of horizontal infinite elements (HIE)

The displacement field in the elastodynamical infinite element can be described in the
standard form of the shape functions based on wave propagation functions as

u(x, z, ω) =
n∑
i=1

m∑
q=1

Niq(x, z, ω)piq(ω) or u(x, z, ω) = Np(x, z, ω)p(ω) , (1)

where Niq(x, z, ω) are the standard shape displacement functions, piq(ω) is the generalized
coordinate associated with Niq(x, y, ω), n is the number of nodes for the element and m

is the number of wave functions included in the formulation of the infinite element. For
horizontal wave propagation basic shape functions for the HIE infinite element, the local
coordinate system of which is shown in fig. 1, can be expressed as :

Niq(x, z, ω) = T (x, z, η, ξ)Niq(η, ξ, ω) = T (x, z, η, ξ)Li(η)Wq(ξ, ω) , (2)

where Wq(ξ, ω) are horizontal wave functions and Li(η) are Lagrange interpolation poly-
nomial which has unit value at ith node while zeros at the other nodes. For HIE infinite
element the ranges of the local coordinates are : η ∈ [−1, 1] and ξ ∈ [0,∞). Here T (x, z, η, ξ)
assures the geometrical transformations of local to global coordinates.

Ni(x, z) =
m∑
q=1

Niq(x, z, ω) = T (x, z, η, ξ)Li(η) ReW (ξ) (3)

and

Ni(x, z)pi =
m∑
q=1

Niq(x, z, ω)piq(ω) = T (x, z, η, ξ)Li(η) ReW (ξ)pi . (4)

Then equation (1) can be expressed as

u(x, z) = Np(x, z)p . (5)
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For horizontal wave propagation the basic shape functions for the HIE infinite element can
be expressed using Bessel functions as follows :

Niq(η, ξ, ω) = Li(η) J̃
q
0 (ψ ξ) , (6)

where J̃q0 (ψ ξ) are scaling modified Bessel functions of the first kind. These functions can
be written as

J̃q0 (ψ ξ) = Jq0 (ψ ξ) exp(−β ξ) , (7)

where Jq0 (ψ ξ) are standard Bessel functions of first kind. In eq. (6) and (7) ψ and β are
constants, chosen in such a way that the length of the wave and the attenuation of the wave
respectively, are identical with those, if eq. (2) is used. This means that the following two
relations are valid:

ψ =
L̄w

Lw
or ψ̂ =

ω̄

ω
, (8)

where Lw is the wave length if Wq(ξ, ω) functions are used; L̄w – if Bessel functions of first
kind J0(ξ) are used (average distance between two zeros) to approximate the displacements
in the infinite element domain, and :

exp(−β ξ) =
(

1√
ξ

)−1

exp(−α ξ) , (9)

because the Bessel functions of first kind attenuate proportionally to 1/
√
ξ. The zeros of

Bessel functions play a dominant role in applications of these functions [17] and demonstrate
their oscillatory. Although the roots of Bessel functions are not generally periodic, except
asymptotically for large ξ, such functions give acceptable results for simulation of wave
propagation. And what is more, using Bessel functions one can approximate change of the
wave length in the far field region. If the element has four nodes and eight DOF (the simplest
two-dimensional plane element [10]) only four shape functions can be used to approximate
the displacements, related to one frequency. These functions can be written as :

N1q(η, ξ, ω) = Nu
iq(η, ξ, ω) = Li(η)J

q
0 (ψ ξ) exp(−β ξ) or (10a)

N1q(η, ξ, ω) = Nu
iq(η, ξ, ω) = Li(η) J̃

q
0 (ψ ξ) , (10b)

N2q(η, ξ, ω) = Nv
iq(η, ξ, ω) = Li(η)J

q
0 (ψ ξ) exp(−β ξ) or (11a)

N2q(η, ξ, ω) = Nv
iq(η, ξ, ω) = Li(η) J̃

q
0 (ψ ξ) (11b)

and

N3q(η, ξ, ω) = Nu
jq(η, ξ, ω) = Lj(η)J

q
0 (ψ ξ) exp(−β ξ) or (12a)

N3q(η, ξ, ω) = Nu
jq(η, ξ, ω) = Lj(η) J̃

q
0 (ψ ξ) , (12b)

N4q(η, ξ, ω) = Nv
jq(η, ξ, ω) = Lj(η)J

q
0 (ψ ξ) exp(−β ξ) or (13a)

N4q(η, ξ, ω) = Nv
jq(η, ξ, ω) = Lj(η) J̃

q
0 (ψ ξ) (13b)

where in the general case ξ = ξst + ξ0, ξ0 ∈ (0, L̄w).
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If rotational DOF are used then the element has four nodes and 1◦ DOF. Two additional
shape functions must be used, written as :

N5q(η, ξ, ω) = Nϕ
iq(η, ξ, ω) =

= Li(η)
[
(Jq−1(ψ ξ) − Jq1 (ψ ξ)) exp(−β ξ)

2
− β Jq0 (ψ ξ) exp(−β ξ)

] (14)

and
N6q(η, ξ, ω) = Nϕ

jq(η, ξ, ω) =

= Lj(η)
[
(Jq−1(ψ ξ) − Jq1 (ψ ξ)) exp(−β ξ)

2
− β Jq0 (ψ ξ) exp(−β ξ)

]
.

(15)

Here Jq0 (ψ ξ) and Jq1 (ψ ξ) are Bessel functions of first kind.

The function Li(η) is linear if no mid-nodes. Finally, if mid-node on the side i−j is used,
then the Lagrange interpolation polynomials must be quadratic. Scaling modified Bessel
functions of first kind, in accordance with eq. (6) (J̃q0 (ψ ξ) and J̃q1 (ψ ξ)), are illustrated in
fig. 2.

The continuity along the artificial boundary (the line between finite and infinite elements,
see fig. 3 line −xb and line xb) is assured in the same way as between two plane finite
elements [9]. The application of the proposed infinite elements in the Finite element method
is discussed below.

Fig.2: J̃q
0 (ψ ξ) and J̃q

1 (ψ ξ) scaling modified Bessel functions

Using the procedure, given in details in [10] and briefly described here, mapped EIEUSF
infinite elements, based on scaling modified Bessel functions, can be formulated, based on
eq. (16)

Ni(x, z) =
m∑
q=1

Niq(x, z, ω) =
m∑
q=1

T (x, z, η, ξ)Niq(η, ξ, ω) =
m∑
q=1

T (x, z, η, ξ)Li(η) J̃
q
0 (ψ ξ) ,

(16)
where J̃q0 (ψ ξ) = Jq0 (ψ ξ) exp(−β ξ).

3. Stiffness and mass matrices

The matrices Kij and Mij , related to the near field of the Soil-Structure System (SSS)
can be written as

Kij =
∫
Ωe

BT
i DBj dΩe (17)
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and

Mij =

⎛
⎝∫

Ωe

�NT
i Nj dΩe

⎞
⎠ I (18)

and those related to the far field Kg
b and Kg

b, i.e. obtained for the proposed infinite elements,
as

Kg
b =

∫
Ωie

B(IE)T
i DB(IE)

j dΩie (19)

and

Mg
b =

⎛
⎝ ∫

Ωie

�N(IT)T
i N(IT)

j dΩie

⎞
⎠ I (20)

where N, B and D are shape function matrix, strain-displacement matrix and stress-strain
matrix, respectively, and I is the identity matrix.

The matrices Kij and Kg
b are calculated using the principle of the virtual work.

If Bessel functions are used, the first derivative of Jq0 (ψ ξ) (The Taylor series indicate
that by Jq−1(ψ ξ) and Jq1 (ψ ξ) the derivative of Jq0 (ψ ξ) can be expressed) is dJq0 (ψ ξ)/dξ =
= (Jq−1(ψ ξ) − Jq1 (ψ ξ))/2.

The general form of the equations of motion in time domain can be written as

[M ] {ü(t)} + [C] {u̇(t)} + [K] {u(t)} = {f(t)} (21)

where [M ], [C] and [K] are mass, damping and stiffness matrices, respectively, and {f(t)}
is nodal force vector.

The equations of motion of the entire SSS, using the Substructural approach with
EIEUSF infinite elements, based on scaling modified Bessel functions, transformed into
time domain by inverse Fourier transformation, are[

Mss Msb

Mbs Mbb

] {
üs(t)
üb(t)

}
+

[
0 0
0 Cg

b

]{
u̇s(t)
u̇b(t)

}
+

[
Kss Ksb

Kbs Kbb + Kg
b

] {
us(t)
ub(t)

}
=

=

⎧⎨
⎩

fs(t)

fb(t) −
t∫
0

Sg
b(t− τ) exp[−a (t− τ)]ub(τ) dτ

⎫⎬
⎭

(22)

if massless far field is assumed. In eq. (21) u(t) and f(t) are respectively displacement and
force vectors, and Cg

b, Kg
b and Sg

b are matrices of mechanical characteristics of the far field
soil region. Here

fg
b (t) =

t∫
0

Sg
b(t− τ) exp[−a (t− τ)]ub(τ) dτ (23)

can be assumed as a Duhamel integral or more generally as a convolution integral, for t ≥ τ .

Equation (23) is a standard convolution of two functions, given in vector forms, namely
ub(τ) and fg

b(t). Here the vector components of ub(τ) can be taken in case of seismic events
from seismograms.
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If rotational acceleration of the base is possible, than eq. (22) becomes[
Mss Msb

Mbs Mbb

] {
üs(t)
üb(t)

}
+

[
0 0
0 Cg

b

] {
u̇s(t)
u̇b(t)

}
+

[
Kss Ksb

Kbs Kbb + Kg
b

]{
us(t)
ub(t)

}
=

=

⎧⎨
⎩

fs(t) + fθ(t)

fb(t) −
t∫
0

Sg
b(t− τ) exp[−a (t− τ)]ub(τ) dτ

⎫⎬
⎭
(24)

where fθ(t) = θ̈ hm.

The matrix Sg
b(t−τ) exp[−a (t−τ)] assures the transformation of the nodal unit displace-

ment impulse vector ûb(τ), applied at moment τ , to a nodal force vector f̂g
b (t) at moment t

and can be treated as a transformation matrix, the general form of which can be written as
T(t, τ). This matrix in the present case can be expressed as

Sg
b(t− τ) exp[−a (t− τ)] , (25)

where Sg
b can be treated as a stiffness matrix, the components of which can be calculated

from Sg
b = ω2 Mg

bb.

The vector {fb(t) − fg
b(t)} denotes the vector of interaction forces of the unbounded soil

acting at nodes b, the nodes situated on the artifitual boundary. These forces are acting as
a result of the relative motion between the unbounded soil and the total motion of the near
field, see Fig. 3, expressed in vector forms as {ub(t) − ug

b(t)} or {ut
b(t) − ug

b(t)}.
For discrete time points the vector {fb(t) − fg

b(t)} is calculated, using eq. (26) in
MathCAD.

{fb(t) − fg
b(t)} =

⎧⎨
⎩fb(t) −

t∫
0

Sg
b(t− τ) exp[−a (t− τ)]ub(τ) dτ

⎫⎬
⎭ . (26)

If the force vector, i.e. fg
b (t), at moment t̃ is known, i.e.

fg
b (t̃) =

t̃∫
0

Sg
b(t̃− τ) exp[−a (t̃− τ)]ub(τ) dτ (27)

at moment t̃+ Δt, the force vector fg
b(t̃+ Δt) can be obtained using

fg
b(t̃+ Δt) =

t̃∫
0

Sg
b(t̃− τ) exp[−a (t̃− τ)]ub(τ) dτ +

+

t̃+Δt∫
t̃

Sg
b(t̃+ Δt− τ) exp[−a (t̃+ Δt− τ)]ub(τ) dτ

(28)

or if Δt is small time interval using the approximation

fg
b (t̃+ Δt) =

t̃∫
0

Sg
b(t̃− τ) exp[−a (t̃− τ)]ub(τ) dτ + ḟg

b(t̃)Δt =

=

t̃∫
0

Sg
b(t̃− τ) exp[−a (t̃− τ)]ub(τ) dτ + Sg

b(Δt) exp[−a (t̃)]ub(t̃) δt .

(29)
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If eq. (23) is expressed as

fg
b(t) =

t∫
0

Sg
b sin[ω (t− τ)] exp[−ξ ω (t− τ)]ub(τ) dτ (30)

then the trigonometric identity sin[ω (t − τ)] = sin(ω t) cos(ω τ) − cos(ω t) sin(ω τ) can be
used and finally

fg
b (t) = cos(ω t)

t∫
0

Sg
b sin(ω τ)) exp[−ξ ω (t− τ)]ub(τ) dτ −

− sin(ω t)

t∫
0

Sg
b cos(ω τ)) exp[−ξ ω (t− τ)]ub(τ) dτ

(31)

Using the proposed infinite elements, the resulting element stiffness matrices related to the
far field are inexpensive to calculate and the global stiffness matrix has relatively small band-
width. It is reasonable to expect similar results in SSI simulations, based on EIEUSF infinite
elements with modified Bessel shape functions to those when EIEUSF infinite elements are
used.

The nodal displacement vector at moment t can be calculated using step-by-step method,
applied to eq. (23), given in time domain. Such a computational technology is demonstrated
in the next Section.

Fig.3: Computational model

4. Numerical example

Structure with rigid strip foundation resting on a homogeneous half-space is modeled as
shown in fig. 3, and the far field is meshed by elastic springs with stiffness , obtained by
Tsitovich relation, see [9] (model 1) , by elastic springs with stiffness obtained by Gorbunov-
Posadov relation, see [9] (model 2), by massless EIEUSF infinite elements with one wave
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frequency [9] (model 3) and by massless infinite elements with Bessel shape functions [9]
(model 4).

Horizontal harmonic displacements with period Tθ = 1 s and amplitude umax
b = 0.25m

are applied on the nodes as shown in fig. 3. The geometry of the model and the material
parameters are given in [10]. The basic parameters are: L = 30m, E = 30000kN/m2

– structure and E = 300kN/m2 – near and far field.

The results for the first 4 natural periods, corresponding to the models and max dis-
placement of node S, are given in Table 1. The time history of the displacements of node S,
see fig. 3, between 9.1 s and 9.5 s are illustrated in fig. 4.

The numerical example shows that, if EIEUSF infinite elements or infinite elements with
Bessel shape functions are used, the position of xb can be translated starting from xb = 3Lc

(see Lc in fig. 3) to xb = Lc without significant influence on the results. However, if elastic
springs are used, the results are significantly affected. Such a reduction of the near field
demonstrates the effectiveness of the proposed infinite elements.

Fig.4: Time history of the displacements of node S

Models model 1 model 2 model 3 model 4
1.5628 0.7512 0.5514 0.2278

natural periods 1.5584 0.7395 0.5377 0.1985
of vibration 1.5614 0.7455 0.5455 0.2219

1.5615 0.7458 0.5459 0.2239
max displacement [m] 0.611 0.572 0.585 0.586

Tab.1

5. Conclusion

In this paper a formulation of elastodynamical infinite element, based on scaled Bessel
shape functions, appropriate for Soil-Structure Interaction problem, the computational con-
cept and the corresponding equations of motion of the entire SSI system are presented. This
element is a new form of the infinite element, given in [9, 10]. The base of the develop-
ment is new shape functions, obtained by modification of the standard Bessel functions of
first kind J0(ξ) by appropriately chosen scale factor. The stiffness matrices of these infinite
elements are calculated by EIEUSF matrix module, developed by the same author.

The numerical example shows the computational efficiency and accuracy of the proposed
infinite elements. Such elements can be directly used in the FEM code. The results are
in a good agreement with the results, obtained by EIEUSF infinite elements. More over
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the use of scaling modified Bessel functions in the construction of the shape functions leads
to computational efficiency in the stage of the calculation of the stiffness and mass infinite
element coefficients.

The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by
similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be for-
mulated. It was demonstrated that the application of the elastodynamical infinite elements
is the easier and appropriate way to achieve an adequate simulation (2D elastic media) in-
cluding basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary
(the line between finite and infinite elements) is discussed as well and the application of
the proposed elastodynamical infinite elements in the Finite element method is explained in
brief.

References
[1] Aubry D., Clouteau D., D’Azemar P.: A dynamic substructure approach to soil-structure

interaction, Computational Mechanics Publications, Vol. 3, Springer Verlag
[2] Bathe K.J.: Finite element procedures in engineering analysis, New Jersey: Prentice-Hill, 1982
[3] Basu U., Chopra A.K.: Numerical evaluation of the damping-solvent extraction method in the

frequency domain, Earthquake Engineering and Structural Dynamics, 31(6): 1231–1250, 2002
[4] Bettess P. Infinite elements, International Journal for Numerical Methods in Engineering,

11:54–64, 1978
[5] Fang K., Brown R.: Numerical simulation of wave propagation in anisotropic media, CREWES

Research Report, Vol. 7, 1995
[6] Genes M.C., Kocak S: A combined finite element based soil-structure interaction model for

large-scale system and applications on parallel platforms, Engineering structures, 10, 2002
[7] Kazakov K.S.: The Finite element method for structural modeling, Bulgarian academy of

science (BAS) publishing house prof. Marin Drinov, second edition, Sofia, 2009
[8] Kazakov K.S.: Infinite elements in the Finite element method, VSU publishing house, third

edition, 2010
[9] Kazakov K.: Formulation of Elastodynamic Infinite Elements for Dynamic Soil-Structure In-

teraction, In WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS,
Issue 1, Vol. 6, No. 1, pp. 91–96, July 2011

[10] Kazakov K.S.: Mapping functions for 2D elastodynamic infinite element with united shape
function, Slovak Journal of Civil Engineering, Bratislava, Vol. XVI, 17–25, 4/2008

[11] Kazakov K.: On an Elastodynamic Infinite Element, appropriate for an Soil-Structure In-
teraction Models, Proceedings of 10th Jubilee National Congress on Theoretical and Applied
Mechanics, BAS, Varna, 2005, Vol. 1, 230–236

[12] Kazakov K.: Stiffness and Mass Matrices of FEM-Applicable Dynamic Infinite Element with
Unified Shape Basis, American Institute of Physics, Current themes in engineering science
2008, selected papers at the World Congress on Engineering, London, England, 95–105, 2009

[13] Kazakov K.: Elastodynamic infinite elements with united shape function for soil-structure
interaction, Finite Elements in Analysis and Design, 46, 936–942, 2010

[14] Luco J.E., Westmann R.A.: Dynamic response of a rigid footing bonded to an elastic half
space, Journal of Applied Mechanics, ASME, 1972

[15] Madabhushi S.P.G.: Modeling of deformations in Dynamic Soil-Structure Interaction problems,
VELACS, technical report TR277, Cambridge University, England, 1996

[16] Oh H.S., Jou Y.Ch.: The Weighted Riesz-Galerkin Method for Elliptic Boundary Value Prob-
lems on Unbounded Domain, NC 28223-0001

[17] Pradhan P.K., Baidya D.K., Ghosh D.P.: Impedance Functions of Circular Foundation Resting
on Soil Using Cone Model, EJGE, 2003

[18] Relton F.E.: Applied Bessel functions, Blackie and Son, London, 1946
[19] Todorovski L.I., Andersen G.R., Likos W.J.: A New Approach to the Physical Modeling of

Dynamic Soil-Structure Interaction, www.ce.jhu.edu, 2000



458 Kazakov K.: Dynamic Response of Soil-Structure Interaction System in Time Domain . . .

[20] Tzong T.J., Penzien J.: Hybrid-modeling of a single layer half-space system in soil-structure
interaction, Earthquake Engineering in Structural Dynamics, 1986:14

[21] Ungless R.F.: Infinite elements, M.A. Sc. Dissertation, University of British Columbia, 1973
[22] Wolf J.P., Song C.: Finite-element modeling of unbounded media, England: Wiley, 1996
[23] Wolf J.P.: Soil-Structure Interaction Analysis in a Time Domain, Englewood Cliffs, N.J.:

Prentice-Hill, 1988
[24] Yan Ch.B., Kim D.K., Kim J.N.: Analytical frequency-dependent infinite elements for soil-

structure interaction analysis in a two-dimensional medium, Engineering Structures 22, 258–
271, 2000

[25] Zhao Ch., Valliappan S.: A Dynamic Infinite Element for Three-dimensional Infinite Domain
Wave Problems, International Journal for Numerical Methods in Engineering, Vol. 36, 2567–
2580, 1993

[26] Zienkievicz O.C., Bando K., Bettess P., Emson C., Chiam T.C.: Mapped Infinite Elements for
Exterior Wave Problems, International Journal for Numerical Methods in Engineering, Vol. 21,
1229–1251, 1985

Calculation of of the infinite element, based on scaled Bessel functions

k11 =
∫

ΩIE

∂

∂ξ
N1q(η, ξ, ω)D11

∂

∂ξ
N1q(η, ξ, ω) dΩIE =

= D11

lη∫
0

L2
1(η) dη

∞∫
0

d
dξ
J̃q0 (ψ1 ξ)

d
dξ
J̃q0 (ψ2 ξ) dξ =

= D11

lη∫
0

L2
1(η) dη

1
4

∞∫
0

[
J̃q−1(ψ1 ξ) + J̃q1 (ψ2 ξ)

] [
J̃q−1(ψ1 ξ) + J̃q1 (ψ2 ξ)

]
dξ =

= D11
1
4

lη∫
0

L2
1(η) dη

∞∫
0

{[
J̃q−1(ψ1 ξ)

]2

+ 2 J̃q−1(ψ1 ξ) J̃
q
1 (ψ2 ξ) +

[
J̃q1 (ψ2 ξ)

]2
}

dξ =

=
E

4 (1 − ν2)

lη∫
0

L2
1(η) dη

∞∫
0

[
ψ−1

1 Γ
(

1
2 (−1)

)
Γ
(

1
2 (−1) + 1

)
Γ(2)

2F1

((
1
2 (−1)

)
;
(

1
2 (1)

)
; 2;

(
ψ1
ψ2

)2
)

+

+ 2
ψ0

1 ψ
−1
2 Γ

(
1
2 (1)

)
Γ
(

1
2 (−3) + 1

)
Γ(2)

2F1

((
1
2 (1)

)
;
(

1
2 (3)

)
; 2;

(
ψ1
ψ2

)2
)

+

+
ψ−1

2 Γ
(

1
2 (3)

)
Γ
(

1
2 (−1) + 1

)
Γ(2)

2F1

((
1
2 (3)

)
;
(

1
2 (1)

)
; 2;

(
ψ1
ψ2

)2
)]

dξ .
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