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MODELING OF THE WEDGE SPLITTING TEST
USING AN EXTENDED CRACKED HINGE MODEL

Tomáš Pail, Petr Frant́ık*

The present paper describes a semi-analytical fracture model based on the cracked
hinge approach by Ulfkjær [1]. Some extensions of the original formulation are in-
troduced and also implemented (as JAVA code) to enable the use of any softening
function with arbitrary shape for the cracked part of the model, which is considered as
a fictitious (cohesive) crack. The application of the model to the wedge-splitting test
(WST) is validated, showing the consistency of the adopted formulations with refer-
ence data. Furthermore, the capability of the model to integrate various softening
curves is verified using FEM simulations.
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1. Introduction

Nowadays, one of the main approaches commonly applied for the description of the frac-
ture behavior of quasi-brittle materials such as concrete and other cement-based composites
is the fictitious crack model (FCM) [2]. The concept of FCM recognizes the experimentally
observed cohesive character of crack propagation which these materials exhibit – as so-called
material softening – due to microcracking and other related processes that occur ahead of
a traction-free crack. The fracture energy dissipated over fracture process zone is appro-
ximated there via a particular closing cohesive stress σw applied to the fracture surface of
a fictitious extension of a real crack (called a ‘fictitious crack’). The σw is non-constant
along the fictitious crack length and is described as a unique function of the crack opening
w by the following formula : σw = f(w). Function f(w) is termed the softening function and
generally expresses the fracture energy GF required to create and fully break a unit surface
of the fictitious (cohesive) crack [3].

The popularity and prevalence of the FCM is generally derives from its simple implemen-
tation within the framework of the finite element method (FEM). However, the practical
use of such an implementation is limited by the amount of trustworthy knowledge regarding
the f(w) considered there as the material input. Among the indirect methods of estima-
ting a softening curve from standardized fracture tests – the three-point bending test or the
wedge splitting test – the inverse analysis approach plays the key role. In the inverse analysis
procedure, a set of parameters of function f(w) is provided as a seed for an iterative process,
and a numerical or analytical model is used to determine a corresponding load-displacement
(P–d) or load-crack mouth opening displacement (P–CMOD) curve, which is compared with
the referenced curve obtained from a laboratory test.
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Since a chosen model is calculated many times during inverse analysis procedures, sim-
plified analytical or semi-analytical models seem to be more adequate for this purpose than
available academic or commercial FEM tools, despite the expected loss of accuracy. In
the present paper, the author’s implementation of the semi-analytical model based on the
cracked hinge concept [1] is introduced with some extensions towards the ability of the model
to use softening curves without any restriction on their shape.

2. The cracked hinge model

2.1. Theoretical basis

The concept of the cracked hinge model was originally presented as an analytical [1] or
semi-analytical [4, 5, 6] solution for the calculation of load-displacement curves for notched
and un-notched beams. The basic assumption of the model is the fact that the presence of
a crack influences the overall stress and strain field of a structure only in a local manner;
this discontinuity is expected to vanish outside a certain bandwidth, s (see Fig. 1, 2). Thus,
the propagation of a crack is modeled as a cracked hinge – where the flexural deformation of
a structure is concentrated – while outside, the rest of the structure is considered in terms
of classical theory of elasticity.

Fig.1: Loading and deformation of the cracked hinge element with
a stress distribution (left) and incremental layer inside the
hinge considered as the single non-linear spring (right)

The hinge itself can be discretized as a set of independent spring elements which are
formed by incremental horizontal strips of the bandwidth. Then, the stress distribution
over the hinge consists of the contribution of each spring. For the i-th spring in position y,
we can formulate a stress state according to the presence of a crack as

σ(y) =
{
σe(ε(y)) = E ε(y) pre-cracked state ,
σw(w(y)) cracked state ,

(1)

where E denotes the elastic modulus, ε(y) elastic strain and w(y) crack opening. For the
evaluation of the σ(y), it is necessary to determine the deformation state of the hinge. If we
assume the hinge has rigid boundaries, this state is uniquely defined by value the of angular
deformation ϕ and by the position of neutral axis, y0. Based on all the assumptions above,
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the strain distribution can be simply obtained from the expression

ε(y) =
2ϕ (y − y0)

s
(2)

and subsequently the total elongation of each spring, u(y), can be calculated numerically as
contributions of ε(y) and w(y) from the equation

u(y) = s ε(y) = s
σw(w(y))

E
+ w(y) . (3)

2.2. Application to WS specimens

In general, the hinge model can be incorporated into any structure with a crack subjected
to a bending moment (possibly combined with normal force). In the case of the WST, the
incorporation of the hinge element in a WS specimen is showed in Fig. 2.

Fig.2: Geometry and the loading of wedge splitting
specimen with incorporated hinge element

For the calculation of a P-CMOD diagram as the required model output we proceed
from the fact that for given values of ϕ and y0, we can simply evaluate the bending moment
Mhinge and normal force Nhinge transmitted by the hinge using the relations :

Nhinge = t

h∫
0

σ(y) dy =
n∑

i=1

Fi ,

Mhinge = t

h∫
0

σ(y) (y − y0) dy =
n∑

i=1

Fi (yi − y0) ,

(4)

where the stress distribution σ(y) is defined from (1) – in the discrete form Fi representing
the force transmitted by the i-th spring quantified as Fi = σ(yi) t dy – and t denotes the
thickness of the specimen. Then, by using the equilibrium conditions

Mhinge = Mext and Nhinge = Psp , (5)

we can numerically determine the y0 for a chosen ϕ as an iterative process. Here Mext stands
for the bending moment invoked by applied external loading forces Psp and Pv (see Fig. 2)
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and can be expressed as

Mext = Psp (d2 − y0) +
1
2
Pv d1 , (6)

where the vertical force Pv is computed for the specified values of the wedge angle αw and
the coefficient of friction in the roller bearings μc

Pv = Psp
2 tanαw + μc

1 − μc tanαw
. (7)

After calculation of force equilibrium conditions, it is necessary to determine the value
of CMOD here defined as the opening of the specimen at the line of loading, depending
on three different assumed contributions. The first contribution, δe, is caused via elastic
deformation of the specimen. The second, δw, is due to the crack opening emanating from
the starter crack/notch. Finally, the third contribution, δg, is caused by the fact that there is
a certain distance from the crack mouth located at h to the line where the CMOD is measured
(located at point b). This geometrical amplification is expressed through the estimation of
the ‘average’ rotation of the crack faces θw = δw/h. Thus, CMOD is completely expressed
by

CMOD = δe + δw + δg . (8)

For the evaluation of the first term in (8) the well-known formula [7] can be used

δe =
Psp

E t
v2(x) , (9)

where v2(x) represents a geometric function computed for x = 1 − h/b as follows

v2(x) =
x

(1 − x)2
(38.2 − 55.4 x+ 33.0 x2) . (10)

The second term in (8), δw, can be directly evaluated from (3) at point y = h. The last
term, δg, is derived differently than in [7], as a simplified formula : δg = (b− h) θw.

3. Results and discussion

The above-mentioned procedures were implemented in the JAVA programming language
and afterwards validated by referenced data [7]. The considered WS specimen had following
dimensions: L = H = 100mm; h = 50—,mm; a0 = 28mm; d1 = 35mm; d2 = 85.2mm;
am = 4.5mm; bm = 35mm; thickness t = 100mm (the dimensions are indicated in Fig. 2).
The angle of the wedge was chosen as αw = 15◦ and friction in the roller bearings was ig-
nored, so that μc = 0. The elastic un-cracked part of the modeled specimen was prescribed
by Young’s modulus E = 30GPa and Poisson’s ratio ν = 0.2 . The fictitious crack part was
defined by the referenced softening function as a bilinear diagram with the following para-
meters: tensile strength ft = 2MPa; critical crack opening wc = 0.5mm; the kink point co-
ordinates σ(w1) = 0.2MPa and w1 = 0.045mm; fracture energy GF = 95.5 J/m2. The hinge
model was loaded by an incremental value of the angular deformation Δϕ = 1.0×105 rad.

The first set of obtained P–CMOD diagrams in Fig. 4 (left) validates the consistency
of these results with referenced data [7]. The observable small discrepancies are probably
caused by the above mentioned modification of the CMOD calculation. The second set of
P–CMOD diagrams in Fig. 4 (right) documents the very fast convergence of the hinge model
depending on the increasing number of springs. From these results it is also obvious that it
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Fig.3: The defined tensile softening functions: with constant (left) and increasing
(middle) values of the fracture energy; FE mesh of the WST specimen (right)

Fig.4: Simulated P–CMOD diagrams of the models using the defined tensile softening
functions with the constant (left) and increasing (right) fracture energy

Fig.5: Simulated P–CMOD diagrams of the models using the defined tensile softening
functions with the constant (left) and increasing (right) fracture energy

is necessary to calibrate the bandwidth s of the hinge model if we require optimal agreement
with the FEM solution (discussed further here [7]).

In order to investigate the capability of implemented model to use any f(w) curve with
arbitrary shape, the comparison of two models, the implemented cracked hinge model (with
fixed ratio s/h = 0.64) and a specialized academic-purpose FE code with FCM developed
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by the authors, was then performed. In this numerical study, the following selected types
of softening function f(w) were used (see Fig. 3) : bilinear, linear and Hordijk’s power ex-
ponential.

The results in Fig. 5 (left) were obtained for the f(w) curves with a considered constant
value of ft = 2.0MPa and GF = 95.5J/m2. It is obvious that a pure change in the shape
of the softening curve caused a relatively small deviation from the corresponding FEM
solution. Similar behavior viewed in Fig. 5 (right) was also obtained for increasing GF values
in the case of bilinear functions (see Fig. 3). The major discrepancy between the P–CMOD
diagrams is concentrated around the peak load and confirms the fact that elastic energy
stored in the crack band increases with increasing bandwidth and results in more unstable
crack growth.

4. Conclusions

The paper presents a description of the author’s implementation of a semi-analytical
fracture model based on the cracked hinge approach. A generalized formulation of this
model was adopted to enable the use of a softening function with arbitrary shape. The
implemented procedures were validated by referenced data [7] for the case of the WST. The
obtained results correspond with the referenced data and confirm the ability of the model
to use various softening curves.
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