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CRITICAL BUCKLING STRESS OF PATCH LOADING

Ivan Baláž*, Yvona Koleková**

Elastic critical buckling stress of the plate girder subjected to transverse force is cal-
culated. The load is applied through the flange and resisted by shear forces in the
web. Comparisons of values of buckling coefficient kσ,b = f(α, β) (Tab. 2) obtained
by 5 various authors : Petersen, von Berg, Ravinger, Kutzelnigg, Protte (Tab. 1)
and calculated by computer program PLII (Tab. 2). Simply supported rectangular
plate (a – length, b – width, t – thickness) without flanges and stiffeners is inves-
tigated for different aspect ratios α = a/b = 1; 2; 3; 4; 5; 8; 10; 20; 30; 40 when sub-
jected to transverse uniformly distributed partial load having relative load lengths
β = c/a = 0.005 (single concentrated force); 0.2; 0.4; 0.6; 0.7; 0.8; 1 (uniformly dis-
tributed load along a). The values of buckling coefficient kσ,b = f(α, β, δ) calculated
by program PLII (Tab. 3). Parametrical study of simply supported rectangular plate
without stiffeners with α = a/b = 4; 5; 8; 10; 20; 30; 40, β = c/a = 0.005 (single con-
centrated force); 0.01; 0.05; 0.1; 0.2; 0.3; 0.4 and different relative normal flange rigidity
δ = Af/(b t) = 0 (without flange); 0.3; 0.5; 1; 1.5; 2; 3. Torsional rigidity of the flanges
is not taken into account.

Keywords : patch loading, elastic critical stress, buckling coefficients, parametrical
study

1. Introduction

The rules for the resistance of a web to the patch loading (Fig. 1) in the older editions
of the modern codes [2], [4] use the same format as the buckling rules for plates subjected
to normal force N , bending moment M or shear force V . In the design procedure it is
necessary to calculate :

– the yield resistance in the form of the stress fy [2], or the force Fy [4],
– the elastic buckling stress σcr [2], or the buckling force Fcr [4],
– the relative slenderness λ =

√
fy/fcr [2], or λ =

√
Fy/Fcr [4],

– the reduction factor κ = f(λ) [2], or χ = f(λ) [4],
– the resistance of web to patch loading σR = κ fy [2], or FR = χ Fy [4].

Despite of the formal similarity in the design procedures, there are important differences
between the both codes [2] and [4] especially in the details of resistance to patch loading
calculation. One of the most important step in a design procedure is calculating of the
elastic buckling stress σcr.
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Fig.1: Notation of webplate dimension : a – length, b – width,
t – thickness, c – length of loading

2. Elastic buckling stress

The elastic buckling force is written as

Fcr = σcr c t (1)

where c is the length over which the applied transverse force is distributed, t the thickness
of the plate, σcr = kσ σE the critical stress and the Euler critical stress are as follows

σE =
π2 E

12 (1 − ν2)
(

b

t

)2 , σE,steel =
189 800(

b

t

)2 , σE,aluminium =
63 267(

b

t

)2 , [N/mm2] (2)

b is the breadth of the plate or depth of the web, b/t the slenderness of the plate or the web,
kσ the buckling coefficient, E Young’s modulus of elasticity (210 GPa for steel, 70 GPa for
aluminium alloys), ν Poisson’s ratio in elastic stage (0.3 for steel and aluminium alloys).

The buckling coefficient kσ depends generally on the
– type of the action (also on the relative loading length β = c/a in the case of transverse

action),
– boundary conditions (simply supported plate is investigated in this paper),
– relative normal rigidity of the flange δ = Af/(b t), where Af is the area of the flange,

and torsional rigidity of the flanges (it is neglected in this study),
– longitudinal and/or transverse stiffeners locations and their rigidities,
– shape of the plate (e.g. on the aspect ratio of the plate α = a/b, in the case of

rectangular plate, where a is the investigated length of the plate – the distance of the
transverse stiffeners),

The numerical values of the buckling coefficient kσ may vary a lot and therefore sometimes
for the purpose of diagrams the more convenient forms of the buckling coefficients kσ,a and
kσ,b are used. For instance Petersen [9], von Berg [1] and Ravinger [12] use instead of the
above defined buckling coefficient kσ the buckling coefficient kσ,a :

Fcr = σcr c t = kσ σE c t =
(
kσ

c

a

)
σE a t = kσ,a σE a t . (3)

Kutzelnigg [7] and Protte [11] use instead of the coefficient kσ the buckling coefficient kσ,b :

Fcr = σcr c t = kσ σE c t =
(
kσ

c

b

)
σE b t = kσ,b σE b t . (4)
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The following formulae are valid

kσ,a = kσ
c

a
= kσ,b

b

a
=

kσ,b

α
= kσ β , (5)

kσ,b = kσ
c

b
= kσ,a

a

b
= kσ,a α = kσ α β . (6)

There are many publications, where the values of the buckling coefficients may be found.
Some of them are mentioned in Tab. 1 together with the ranges of dimensionless parameters
for which the values of buckling coefficient were calculated.

Petersen [9] von Berg [1] Ravinger [12] Kutzelnigg [7] Protte [11]

(1993) (1989) (1979) (1982) (1994)

Type of kσ kσ,a kσ,b

α = a/b 0.3–35 0.7–(≥ 10) 1–3 0.5–5 2–10

β = c/a 0–1 0–1 0, 1 0–1 0–1

δ = Af/(b t) 0 0 0 0 0, 0.1, 0.3, 0.5, 1

Remarks simply
supported
plate
(s.s. plate)

simply
supported
plate
kσ(α ≥ 10) =
= kσ(α = 10)

4 various
boundary
conditions
incl. s.s. plate

s.s. plate,
0 or 1 or 2
longitudinal
stiffeners

simply
supported
plate

Tab.1: The way of calculation of the buckling coefficient
values according to various authors

The numerical values of the buckling coefficient kσ,b computed by the program PLII [10]
for the patch loading, simply supported rectangular plate with no flanges (δ = 0) and no
stiffeners are given in Tab. 2. They are compared with the results of the authors from Tab. 1.
The comparison of the results given in Tab. 2 leads to the following conclusions :

– for the small aspect ratios (α < 4) the differences among the values of all authors are
negligible (≤ 10 %),

– the agreement between PLII’s [10] and Protte’s results [11] is excellent in the whole
Tab. 2,

– the greatest difference between Protte’s and Kutzelnigg’s results in Tab. 2 is 60 % for
the case α = 5, β = 1. The reason why the results of Protte [11] and Kutzelnigg [7]
differ was explained in Ravinger [12] (p. 34, paragraph 4.1). The reason is, that
Kutzelnigg took into account only the influence of the vertical normal stresses σy.
The influences of the stresses σx and τ were neglected in his buckling coefficient
calculations. The differences are the greater the greater is aspect ratio α, because
with increasing α, the influence of so called beam stresses σx on the value of buckling
coefficient increases,

– the buckling coefficients for the very long plates (α > 10), a case which may be
important in the design of the crane runway girders without intermittent transverse
stiffeners, can be found only in Petersen [9] and Berg [1]. Ravinger [12] (p. 421),
reported problems in finding the minimum value of buckling coefficients for the cases
with aspect ratios α > 3. Petersen’s and von Berg’s results are based (see [9] and [1])
on the older Protte’s publications. They are each other in good agreement except
the cases β = 0, α ≥ 8. They differ a lot from PLII’s [10] and Protte’s [11] results
for α ≥ 5. The difference is the greater the greater is the aspect ratio α. For the
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β = c/a

a = a/b Author 0.005 0.2 0.4 0.6 0.7 0.8 1

1 PLII [10] C 3.32 3.42 3.74 4.24 4.55 4.91 5.67

Kutzelnigg [7] D 3.00 3.30 3.60 4.30 4.70 5.20 6.25

Petersen [9] D 3.24 3.45 3.76 4.26 4.54 5.04 6.09

von Berg [1] T 3.20 3.40 3.70 4.20 – 5.00 6.20

Ravinger [12] D 3.50 3.55 3.79 4.25 4.55 4.90 5.70

2 PLII [10] C 2.37 2.54 2.91 3.46 3.79 4.17 5.09

Protte [11] D 2.35 2.50 2.90 3.45 3.80 4.20 5.08

Kutzelnigg [7] D 2.26 2.54 2.9 3.65 4.10 4.50 5.45

Petersen [9] D 2.30 2.52 2.82 3.31 3.66 4.14 5.21

von Berg [1] T 2.36 2.60 2.90 3.40 – 4.40 5.10

Ravinger [12] D 2.40 2.60 3.00 3.64 4.00 4.42 5.28

3 PLII [10] C 2.23 2.54 3.21 4.05 4.52 5.02 6.16

Protte [11] D 2.21 2.51 3.24 4.05 4.50 5.05 6.13

Kutzelnigg [7] D 2.20 2.64 3.44 4.40 5.00 5.48 6.68

Petersen [9] D 2.14 2.61 3.18 3.96 4.47 5.05 6.39

von Berg [1] T 2.25 2.40 2.94 3.90 – 5.07 6.30

Ravinger [12] D 2.40 2.70 3.27 4.05 4.50 5.07 6.30

4 PLII [10] C 2.10 2.58 3.58 4.83 5.47 6.02 7.30

Protte [11] D 2.07 2.55 3.55 4.80 5.46 6.00 7.26

Kutzelnigg [7] D 2.30 2.90 4.00 5.40 6.00 6.76 8.36

Petersen [9] D 2.04 2.87 3.72 4.85 5.51 6.22 7.51

von Berg [1] T 2.20 2.48 3.40 4.60 – 6.20 7.56

5 PLII [10] C 1.98 2.61 3.70 4.38 4.76 5.18 6.23

Protte [11] D 1.94 2.60 3.75 4.45 4.76 5.20 6.22

Kutzelnigg [7] D 2.39 3.22 4.65 6.40 7.20 8.10 9.95

Petersen [9] D 2.00 3.31 4.44 5.91 6.71 8.56 9.83

von Berg [1] T 2.35 2.70 4.00 5.40 – 7.40 9.15

8 PLII [10] C 1.62 2.17 2.50 2.88 3.10 3.37 4.04

Protte [11] D 1.58 2.20 2.50 2.90 3.13 3.40 4.10

Petersen [9] D 2.00 4.46 6.54 8.81 10.16 11.48 14.28

von Berg [1] T 3.20 3.68 5.44 7.92 – 10.56 13.92

10 PLII [10] C 1.42 1.78 2.02 2.32 2.50 2.71 3.25

Protte [11] D 1.38 1.80 2.05 2.35 2.55 2.75 3.30

Petersen [9] D 2.00 5.19 7.90 10.65 12.65 13.82 17.41

von Berg [1] T 3.60 4.20 6.20 9.50 - 12.70 17.00

20 PLII [10] C 0.81 0.90 1.01 1.14 1.23 1.34 1.60

Petersen [9] D 2.00 8.49 14.41 20.17 23.86 27.18 33.67

von Berg [1] T 7.20 8.40 12.40 19.00 - 25.40 34.00

30 PLII [10] C 0.54 0.59 0.63 0.76 0.82 0.89 1.06

Petersen [9] D 2.00 11.04 20.55 30.25 35.49 40.60 51.15

von Berg [1] T 10.80 12.60 18.60 28.50 – 38.10 51.00

40 PLII [10] C 0.39 0.45 0.50 0.54 0.58 0.62 0.76

Petersen [9] D 2.00 14.11 26.49 41.19 46.92 53.00 66.79

von Berg [1] T 14.40 16.80 24.80 38.00 – 50.80 68.00

Numerical values were : C – computed, D – taken from a diagram, T – taken from a table

Tab.2: Comparison of the values of the buckling coefficients kσ,b = f(α, β); patch
loading, simply supported rectangular plate, no flanges (δ = 0), no stiffeners



Engineering MECHANICS 87

case α = 5 the Petersen’s [9] and von Berg’s [1] results does not differ a lot from
Kutzelnigg’s [7] ones, which are, as it is explained above, not correct. It is therefore
believed that Petersen’s [9] and von Berg’s [1] results for the long plates (α > 5) are
not correct too and they are, comparing with PLII’s [10] and Protte’s [11] results, on
the unsafe side. Note : PLII gives kσ-values, from which kσ,b-values were calculated
according to (6).

The influence of the relative normal rigidity of the flanges δ = Af/(b t) on the buckling
coefficient was investigated by Protte [11]. The results of program PLII [10] are in excellent
agreement with Protte’s [11] ones also in this case. The part of a large parametrical study
is shown in Tab. 3 and Fig. 2. It may be concluded from the results :

– the influence of the flange normal rigidity δ on the buckling coefficient is negligible in
the range α ≤ 4. Maximum difference is < 25 % for the β = 0.005, α = 4,

– for the cases with α ≤ 4 and any δ, we can use the values of buckling coefficients
computed for δ = 0, being slightly on the safe side,

– for the longer plates (α > 4) is the influence of the δ on the increasing of the buckling
coefficient the greater the greater is aspect ratio α.

Program PLII [10] takes into account the influence of the relative normal δ = Af/(b t) and
bending rigidity γ = If/(b t3/12) of the flange, but it could take into account also torsional
flange rigidity, which has greater effect on the increasing of the buckling coefficient. The
various boundary conditions may be taken into account by program PLII too.

Fig.2: Buckling coefficients kσ,b = f(α, β, δ = 0.3) computed by the program PLII [10]
for aspect ratios 0.5 ≤ α = a/b ≤ 40, for 0.005 ≤ β = c/a ≤ 1 and for relative
normal rigidity of the flange δ = Af/(b t) = 0.3; torsional rigidity of the flanges
was not taken into account

The more accurate values kF, which were calculated for more complex boundary con-
ditions and were calibrated with numerous experiments, may be found in Lagerqvist [8].
These expressions were simplified to formula

kF = 6 +
2
α2

, (7)

which is used in [4], [5] and [15] in completely different design procedure as it was done
in [2]. The values computed according to the formula (7) do not differ a lot from the values
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β = c/a

a = a/b δ = Af/(b t) 0.005 0.01 0.05 0.1 0.2 0.3 0.4

4 0 2.098 2.104 2.149 2.246 2.577 3.036 3.581
0.3 2.497 2.504 2.550 2.644 2.966 3.411 3.935
0.5 2.552 2.559 2.605 2.697 3.013 3.452 3.971
1.0 2.607 2.612 2.656 2.744 3.056 3.484 3.996

5 0 1.972 1.979 2.037 2.170 2.610 3.194 3.700
0.3 2.460 2.470 2.531 2.673 3.139 3.762 4.479
0.5 2.532 2.540 2.604 2.742 3.201 3.817 4.526
1.0 2.599 2.610 2.670 2.800 3.250 3.860 4.560
1.5 2.629 2.636 2.693 2.825 3.270 3.873 4.571
2.0 2.648 2.655 2.709 2.839 3.280 3.880 4.575
3.0 2.683 2.688 2.738 2.863 3.295 3.888 4.581

8 0 1.606 1.615 1.697 1.884 2.172 2.338 2.501
0.3 2.329 2.345 2.473 2.781 3.736 4.931 5.950
0.5 2.451 2.467 2.598 2.908 3.865 5.050 6.298
1.0 2.566 2.584 2.712 3.016 3.960 5.136 6.384
1.5 2.612 2.626 2.750 3.053 3.990 5.156 6.406
2.0 2.641 2.654 2.774 3.072 4.003 5.166 6.416
3.0 2.683 2.695 2.807 3.098 4.018 5.176 6.426

10 0 1.427 1.427 1.496 1.647 1.781 1.896 2.021
0.3 2.288 2.288 2.437 2.863 4.143 4.743 5.176
0.5 2.449 2.449 2.604 3.046 4.368 5.871 6.826
1.0 2.576 2.600 2.750 3.190 4.510 6.050 7.590
1.5 2.651 2.651 2.804 3.242 4.546 6.084 7.647
2.0 2.682 2.682 2.832 3.266 4.563 6.099 7.670
3.0 2.725 2.725 2.870 3.294 4.579 6.112 7.689

20 0 0.812 0.812 0.835 0.856 0.902 0.954 1.013
0.3 1.826 1.826 2.078 2.254 2.434 2.600 2.774
0.5 2.162 2.162 2.574 3.074 3.386 3.646 3.906
1.0 2.468 2.508 3.020 4.300 5.500 6.060 6.560
1.5 2.634 2.634 3.166 4.462 7.074 7.890 8.562
2.0 2.700 2.700 3.232 4.526 7.532 8.780 9.362
3.0 2.772 2.772 3.296 4.578 7.676 9.488 9.988

30 0 0.545 0.545 0.553 0.565 0.595 0.629 0.667
0.3 1.402 1.402 1.478 1.534 1.631 1.732 1.842
0.5 1.832 1.833 2.053 2.150 2.305 2.454 2.614
1.0 2.339 2.400 3.210 3.570 3.903 4.200 4.500
1.5 2.619 2.620 3.629 4.827 5.430 5.889 6.330
2.0 2.726 2.728 3.771 5.799 6.771 7.434 8.070
3.0 2.834 2.836 3.885 6.132 8.460 9.102 9.612

40 0 0.408 0.408 0.414 0.423 0.445 0.470 0.500
0.3 1.092 1.096 1.125 1.160 1.229 1.302 1.383
0.5 1.487 1.500 1.578 1.638 1.744 1.850 1.968
1.0 2.135 2.200 2.632 2.788 3.000 3.204 3.444
1.5 2.527 2.436 3.558 3.867 4.224 4.524 4.832
2.0 2.590 2.692 4.264 4.856 5.392 5.812 6.228
3.0 2.748 2.854 4.512 6.552 7.384 8.040 8.696

Tab.3: Buckling coefficients kσ,b = f(α, β, δ) computed by the program PLII [10];
patch loading with relative loading length β, simply supported rectangular
plate having aspect ratio α, flanges with relative normal rigidity δ; torsional
rigidity of the flanges was not taken into account
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of buckling coefficient computed for the plate with upper edge fixed in loaded flange when
the load is applied on the short relative length β (compare them for instance with the results
for β = 0 in Ravinger [12], p. 410) and are not comparable with kσ,b values given in this
paper.

As usually, of course, one cannot mix the parts of design procedures taken from the
different codes. This rule is valid also for this topic and the codes [2] and [4, 5, 15]. In
the latter codes, which use the formula (7), the design procedure was calibrated with the
numerous experimental values given in Lagerqvist [8]. See also Johansson et al [14].
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belastung, Stahlbau 51, H. 3, 1982, S. 76–84
[8] Lagerqvist O.: Patch Loading, Resistance of steel girders subjected to concentrated forces,

Doctoral Thesis 1994:159 D. Luleøa University of Technology, 1995
[9] Petersen C.: Stahlbau. 3. überarb. und erweit. Aufl., Braunschweig; Wiesbaden: Vieweg, 1993,

ISBN 3-528-28837-X
[10] Programm PLII 02 Win 95: 2011. Beuluntersuchung versteifter Platten nach DIN 18 800 Teil

3, (prof. P. Osterrieder, TU Cottbus), Friedrich + Lochner GmbH Stuttgart; Dresden
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