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UNSTEADY BOUNDARY LAYER FLOW DUE TO A
STRETCHING POROUS SURFACE IN A ROTATING FLUID

K. Govardhan*, B. Balaswamy**, N. Kishan**

The induced unsteady flow due to a stretching porous surface in a rotating fluid,
where the unsteadiness is caused by the suddenly stretched surface is studied in this
paper. After a similarity transformation, the unsteady Navier-Stokes equations have
been solved numerically using the Adams Predictor Corrector Method. It is found
that there is a smooth transition from the small time solution to the large time or
steady state solution.
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1. Introduction

The description of flow and heat transfer in the boundary layer induced by a stretching
surface has many important applications in manufacturing processes in industry such as the
cooling of an infinite metallic plate in a cooling bath, the boundary layer along material
handling conveyers, the aerodynamic extrusion of plastic sheets, the boundary layer along
a liquid film and condensation processes, the cooling and/or drying of paper and textiles,
and glass filer production, to name a just a few of these applications. In particular, in
the extrusion of a polymer in a melt-spinning process, the extrusion from the die is gene-
rally drawn and simultaneously stretched into a sheet, which is then solidified throughout
quenching or gradual cooling by direct contact with water. In all these cases, a study of
the flow field and heat transfer can be of a significant importance because the quality of
the final product depends to a large extent on the skin friction coefficient and the surface
heat transfer rate. Recent papers by Wang et al. [1], Magyari and Keller [2], Chen [3] and
Mahapatra and Gupta [4], and the book by Pop and Ingham [5] show considerable research
activities in this area.

The fluid dynamics over a stretching surface is important in many practical applications
such as extrusion of plastic sheets, paper production, glass blowing, metal spinning and
drawing plastic films, to name just a few. The quality of the final product depends on the
rate of heat transfer at the stretching surface. Since the pioneering study by Crane [6] who
presented an exact analytical solution for the steady two-dimensional stretching of a surface
in a quiescent fluid, many authors have considered various aspects of this problem and
obtained similarity solutions.

The boundary later flow due to stretching vertical surface in a quiescent viscous and
incompressible fluid when the buoyancy forces are taken into account have been considered
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only in the papers by Chen [3], and very recently by Ali [7], Abo – Eldahab [8], and Partha
et al. [9]. A. Sri Ramulu et al. [10] studied Steady flow and heat transfer of a viscous
incompressible fluid through porous medium over a stretching porous sheet. The studies
carried out in these papers deal only with steady-state flow, but the flow and thermal
fields may be unsteady due to either impulsive stretching of the surface of external stream
and sudden changes in the surface temperature. However, to our best knowledge, only
Kumari et al. [11] have studied the unsteady free convection flow over a continuous moving
vertical surface in an ambient fluid. Both constant surface temperature and constant surface
heat flux condition have been considered. However, only the assisting flow case has been
considered in Kumari et al. [11]. When a flat surface is impulsively stretched in an ambient
fluid, the inviscid (potential) flow is developed almost immediately, but the viscous flow
within the boundary layer develops slowly and it becomes a fully developed flow after some
time. The development of the boundary layer takes place in two stages. For small time
t− (� 1), the flow is dominated by the viscous forces and the convective acceleration plays
only a minor role in the flow development. For large time (t− → ∞), it becomes steady. For
the intermediate region, 1 < t− < ∞, there is a smooth transaction from unsteady to steady
flow or the transition from the unsteady to steady flow takes place without a singularity or
flow instability(or formation of cells), see Telionis [12].

Transient three dimensional electrical conducting viscous incompressible fluid fast an im-
pulsively started horizontal porous plate relative to a rotating system taking into account
the effect of hall current is studied by N. Ahmed and H. K. Sarmah [13].An Analytical
solution to the problem of the MHD free and forced convection three dimensional flow of
an incompressible viscous electrically conducting fluid with mass transfer along a vertical
porous plate with transverse sinusoidal suction velocity studied by N. Ahmed [14]. The heat
transfer and hydro magnetic boundary layer flow of an electrically conducting viscous incom-
pressible fluid over a continues flat surface moving in a parallel free stream is investigated
by Khem Chand [15]. Bisemini et al. [16] studied theoritical and numerical investigation on
ship motion and propulsion in marine engineering.Lorenzini et al. [17] investigated that the
geometric optimization of isothermal cavities according to Bejan’s theory.

Nazar et al. [18] studied the unsteady flow due to a stretching surface in a rotating
fluid, where the unsteadiness is caused by the suddenly stretched surface. In the present
study we have considered the unsteady flow due to a stretching surface in a rotating fluid in
the presence of porous media, where the unsteadiness is caused by the suddenly stretched
surface. The transformed governing partial differential equations are solved numerically by
using the Adams predictor-corrector method for some values of the physically governing the
parameters.

2. Mathematical description

Consider the two-dimensional stretching of a surface in a rotating fluid. At time t = 0,
the surface at z = 0, is impulsively stretched in the x-direction in a rotating fluid. Due
to the Coriolis force, the fluid motion is three-dimensional. Let (u, v, w) be the velocity
components in the direction of Cartesian axes (x, y, z), respectively, with the axes rotating
at an angular velocity Ω in the z direction.
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Fig.1: Physical model and co-ordinate system

The unsteady Navier-Stokes equations governing the flows are
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where p is the pressure, � is the density, ν is the kinematic viscosity, k is the gyro viscosity
and ∇2 denotes the three-dimensional Laplacian. Let the surface be impulsively stretched
in the x-direction such that the initial and boundary conditions are

t < 0 : u = v = w = 0 for any x, y, z ,

t ≥ 0 : u = a x, v = w = 0 at z = 0 ,

u → 0, v → 0, w → 0, as z → ∞ ,

(5)

where a (a > 0) has the dimension of [t−1] and represents the stretching rate. We now
introduce the following similarity variables

u = a x f ′(ξ, η) , v = a xh(ξ, η) , η =
(a

ν

)1/2

ξ1/2 z , w = −(a ν)1/2 ξ1/2 f(ξ, η) ,

ξ = 1 − e−τ , τ = a t .
(6)

Then, equations (2)–(4) become
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where λ = Ω/a and K = ν/k porosity parameter. The boundary conditions (5) become

f(ξ, 0) = 0 , f ′(ξ, 0) = 1 , f ′(ξ,∞) = 0 , h(ξ, 0) = 0 , h(ξ,∞) = 0 . (9)

The primes denote the differentiation with respect to η. The wall shear stress τx
w and τy

w in
the x and y directions are given by τx

w = μ [∂u/∂z]z=0 and τy
w = μ [∂v/∂z]z=0 and related to
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the non-dimensional skin friction coefficient in x and y directions. Cx
f and Cy

f , respectively,
according to
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Using variable (6), we obtain

Cx
f Re1/2

x = ξ−1/2 f ′′(ξ, 0) , Cy
f Re1/2

x = ξ−1/2 h′(ξ, 0) , (11)

where Rex = (a x)x/ν is the local Reynolds number.

3. Method of solution

The terms is ξ (1 − ξ) ∂f/∂ξ replaced by(
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as an approximation to find the variables variable ξ + Δξ knowing at ξ as a function of η.
Similarly ξ (1 − ξ) ∂h/∂ξ is replaced by(
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We thus have one third order another second order ordinary differential equations for each ξ.
Needs five conditions to be prescribed on f and h.

At ξ = 0, the equations (7) and (8) reduced to

f ′′′ +
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2

η f ′′ = 0 and h′′ +
1
2

η h = 0 .

By solving these conditions we know f(0, η), f ′(0, η), f ′′(0, η), f ′′′(0, η), h(0, η), h′(0, η).
The method of solving these equations for ξ = 0, Δξ, 2Δξ etc is now described below.

We assume values for missing initial conditions namely α = f ′′(0) and β = h′(0) we find
α and β by solving G(α, β) = f ′′(ξ,∞, α, β) = 0 and P (α, β) = h(ξ,∞, α, β) = 0 for each ξ.

These values of α, β are found by Newton’s method for this we need derivatives of G

and P with respect to α and β at η = ∞. These are obtained by solving the following two
linear equations
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with the initial conditions

F (ξ, 0) = 0 , F ′(ξ, 0) = 0 , F ′′(ξ, 0) = 1 , H(ξ, 0) = 0 , H ′(ξ, 0) = 0 .

This solution gives derivatives of G and P with respect to α.

If we use the initial conditions F (ξ, 0) = 0, F ′(ξ, 0) = 0 , H(ξ, 0) = 0, H ′(ξ, 0) = 1 to
obtain the derivative G and P with respect to β.

α and β are connected for every time we are found that three or four iteration were
enough to find α and β.

4. Results and disscussion

The computations are carried out for 0 ≤ ξ ≤ 1, various values of some values of para-
meter λ and porosity parameter K. To validated our results, we have compared the values
of the reduced skin frictions f ′′(ξ, 0) and h′(ξ, 0) when ξ = 1 (final steady-state flow) with
those of Nazar (2004). The results are found to be in excellent agreement. The comparison
is shown in Table 1, for various values of λ. It can be seen that the values are negative
for values of λ considered in this study. The values of Cx

f Re1/2
x increases with λ as can be

observed from Table 1.

λ f ′′(0) Nazar 2004 f ′′(0) present h′(0) Nazar 2004 h′(0) present
0 −1 −1 0 0
0.5 −1.1384 −1.1389 −0.5128 −0.5123
1 −1.3250 −1.3255 −0.8371 −0.8368
2 −1.6523 −1.6523 −1.2873 −1.2873

Tab.1

Fig.2: Similarity velocity profile in x-direction for ξ = 1

Fig. 2 shows that the evolution of the similarity velocity profiles f ′(η) at the final steady
state flow at ξ = 1 in the x-direction. It is observed that the velocity decay monotically and
exponentially for λ = 0 and small values of λ, while the decay is oscillatory for large values
of λ. The velocity profiles decrease with increase of λ.

Fig. 3 depicts the similarity velocity profile for steady state (ξ = 1) for different values
of λ. From the Fig. 3, it is noticed that decrease in the fluid velocity with in the boundary
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Fig.3: Similarity velocity profiles in x-direction for ξ = 1

Fig.4: Similarity velocity profile in y-direction for ξ = 1

Fig.5: Similarity velocity profiles in y-direction for ξ = 1

layer due to the porosity parameter K. It is interesting to note that the influence of porosity
parameter is more when the λ = 3 compared with λ = 1.

The similarity velocity profiles h(η) in y-direction for ξ = 1 is shown in Fig. 4 for some
values of λ. It can be seen for zero and small values of λ that the velocity decays monoto-
nically and exponentially, while for large value of λ the decay is oscillatory.

Figure 5 shows the influence of the porosity parameter K on similarity velocity profile h

for steady state (ξ = 1) when λ = 1 and λ = 3. It is noticed that increase in the porosity
parameter K leads to increase in the similarity velocity profiles h(η). It is note worthy to
note that the effect of porosity parameter is more important when λ = 1 then λ = 3.

The variations of the skin friction coefficient with ξ in x-direction and in y-direction are
shown in Fig. 6 and Fig. 7 respectively for different values of λ. It is noticed that the value
of Cx

f Re1/2
x and Cy

f Re1/2
x decreases with the increases of λ.

Figs. 8 and 9 show the variation of skin friction coefficient Cx
f Re1/2

x and Cy
f Re1/2

x with τ

for some values of λ. It can be seen that as λ increases the skin friction coefficient decreases.
It is noticed that there is agreement between the results when we solved fully unsteady
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Fig.6: Variation with of ξ the skin friction coefficient
in x-direction for some value of λ

Fig.7: Variation with of ξ the skin friction coefficient
in y-direction for some value of λ

Fig.8: Variation with of τ the skin friction coefficient
in x-direction for some value of λ

boundary layer equations and final steady-state equations. It is observed that due to impul-
sive motion, the skin friction coefficient as large magnitude (absolute values) for small time
(τ ≈ 0) after the start of the motion, and decreases monotonically and reaches the steady
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Fig.9: Variation with of τ the skin friction coefficient
in y-direction for some value of λ

state values at ξ = 1 (τ → ∞). There is, therefore, a smooth transisation from the small
time solution to the large time solution.

Nomenclature

u, v, w velocity components in x, y, z directions
Ω angular velocity
p pressure
� density
k gyro viscosity
K porosity parameter
ν kinematic viscosity
REx local Reynolds number
τ shear stress
Cf skin friction coefficient
∇2 Laplace transform operator
a stretching rate
f ′ similarity velocity profile in x-direction
h similarity velocity profile in y-direction
f similarity velocity profile in z-direction
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