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TORSION OF A BAR WITH HOLES

Jan Franc̊u*, Petra Rozehnalová-Nováčková**

The contribution is a continuation of [2] which deals with analytic solution of torsion
of a bar with simply connected profile, i.e. profile without holes. In this paper the
case of multiply connected profile, i.e. profile with holes, is studied. The stress-strain
analysis leads to the Airy stress function Φ. On boundary of each hole the function Φ
has prescribed an unknown constant value completed with an integral condition. The
mathematical model is also derived from the variational principle.

The second part of the paper contains solutions for the ring profile and for compar-
ison also for incomplete ring profiles including the ‘broken’ ring profile. The results
are compared in tables and pictures.
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1. Introduction

Torsion of the elastic bars is studied in several textbooks, see e.g. [6], but the results
are mostly introduced without proofs or circular cross-section only is considered, e.g. in
monograph [1]. In this circular case the cross-sections remain planar, but in case of non-
circular bar, the real cross-sections are deflected from the planar shape. The equation for
a non-circular bar with ‘full’ profile is derived correctly in [5], but no examples are introduced.
Worth of visiting is an older monograph [3] published in 1953 by Anselm Kovář in Czech.
It contains solution for many profiles and also a brief history of the torsion theory. Let us
mention paper [4] which deals with the torsion problem for profiles with holes even for some
nonelastic materials but in variational formulation only.

What is the purpose of studying analytical methods in the present time when any profile
can be computed e.g. by FEM or other numerical methods? Although the analytic methods
can solve only particular cases, they yield, in addition, also dependence of the solution on
the data, e.g. dimensions of the profile, etc. It leads to better understanding of the problem,
for further arguments see Introduction of [2].

In [2] the stress-strain analysis of the torsion of a bar with constant profile was carried
out. The analysis was directed mostly to the case of a bar with ‘full’ profile, i.e. the profile
without ‘holes’. In mathematical terminology the profile without holes is called simple
connected domain. In this contribution, which is a continuation of [2], we shall deal with
the case of profiles with one or more holes, the so-called multiply connected domain. It
brings several interesting difficulties.
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The strain-stress state is described by means of the so-called Airy stress function Φ
satisfying the Poisson equation −ΔΦ = 2 on the profile Ω. Zero stress condition on the
bar surface leads to constant value condition on the boundary. Since the boundary ∂Ω of
a multiply connected domain Ω has more separated components, we can choose zero value on
the outer boundary Γ0. On any hole boundary Γi the constant value ci is not determined. By
the theory of partial differential equations for any values ci we obtain different solutions Φ.
We need to find additional conditions to ensure uniqueness of the solution Φ.

Modeling of the torsion starts with the deflection function f (in this paper it will be
denoted by f instead of usual ϕ, since the symbol ϕ will be reserved for the polar coordi-
nates ρ, ϕ). In the case of multiply connected domain Ω having a function Φ the deflection
function f need not exists. The potentiality condition for the deflection function in multiply
connected domains yields the desired additional conditions, see Subsection 2.2., Problem (P)
– explanation of this phenomena seems to be new.

Variational approach to the problem in Subsection 2.3 leads to minimization of an integral
functional J(Φ) over a space S of functions Φ being constant on the holes Ωi, Problem (V).
We derive that its minimum Φ satisfies the Problem (P), see (16), including the additional
integral condition on the holes Γi.

Having the solution Φ we can complete the stress-strain analysis. The torque M depends
by (22) on the cross-section moment J , which can be computed from Φ by (23). The stress
is proportional to the gradient |∇Φ|, we prove that its maximum can appear only on the
boundary. We derive that while in the case of profile without holes the thicker the profile
is, the higher the stress is. In the case of the profile with holes the stress behaves in the
opposite way, see Subsection 2.4.

The second part is devoted to concrete examples. Solution for the ring profile can be
simply derived from the full circle profile. We want to compare it with the ‘broken’ ring
profile which is already profile without hole. It is a special case of the open β-angle segment
of the ring profile. Since the exact solution based on Fourier series is by no means simple,
we show also an approximative solution. This exact solution was briefly derived already
in [3], but study of series convergence and of singular cases of angle β = π/2 and β = 3π/2
is missing there.

We compare the values of approximative and exact solutions of various values of ratio
λ = r/R of the inner r and outer R radius and various angles β. Further we compare the
cases of the ‘complete’ ring profile and the ‘broken’ ring profile. Using similar methods we
can obtain results for elliptic rings, i.e. the space between two similar ellipses.

The computations were carried out using the MAPLE system of symbolic and numeric
computations. The results are visualized in pictures and tables.

2. Theory

To make the paper self-contained we briefly repeat settings of the problem. Its analysis
will be carried out with respect to problems appearing in the case of profile with holes, i.e.
the case of multiply connected profile of the bar.
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2.1. Geometry, strain and stress analysis

As in the previous paper [2] we consider an isotropic homogeneous prismatic bar. The
axis of the bar (which is also axis of the torsion) coincides with x-axis, the cross-section Ω
is a set in the y, z plane. Contrary to [2] the profile Ω may have holes, it need not be simply
connected. We shall extend the notation in the following way, see Fig. 1 :

– Ω0 – a bounded open simply connected set – the profile including space occupied by
the holes,

– Ω1,Ω2, . . . ,Ωk – finite number of simply connected disjoint open subsets of Ω0 – the
‘holes’ in the profile,

– Ω = Ω0 \ (Ω1∪Ω2∪· · ·∪Ωk) – multiply connected open bounded set in R2, the actual
cross-section of the twisted bar.

Fig.1: Profiles with holes, notation of tangent and normal vectors

The bar thus occupies the reference volume (0, �) × Ω. Let us denote the boundaries :

– Γ0 = ∂Ω0 – the outer boundary of the profile Ω,

– Γi = ∂Ωi, i = 1, . . . , k – boundary of the i-th hole Ωi, thus

– ∂Ω = Γ0 ∪ Γ1 ∪ · · · ∪ Γk.

– The boundary Γi is a simple closed curve parameterized by

Γi = {(y, z) |y = γy(s), z = γz(s), s ∈ Ii = 〈ai, bi〉} ,

where the piecewise differentiable functions γy, γz satisfy (γ′y)
2 +(γ′z)

2 = 1. The curve
and its parametrization of Γ0 is oriented counterclockwise, the other curves Γ1, . . . ,Γk

and their parametrizations are oriented clockwise, see Fig. 1.

All the sets have piecewise smooth boundaries (Lipschitz continuous would be sufficient).
We suppose also that all boundaries Γ0,Γ1, . . . ,Γk are disjoint sets, which implies that each
two of them have positive distance. Further we denote

– t = (ty, tz) = (γ′y, γ
′
z) – the unit tangent vector to Γi.

– n = (ny, nz) – the unit outer normal vector to Γi.

Since the boundaries are piecewise smooth, the vectors n and t are uniquely defined on
each Γi except for a finite number of isolated points. They are connected by the relation

γ′y = ty = −nz and γ′z = tz = ny . (1)

Let us remark that the outer normal vector n on the hole boundary Γi, i = 1, . . . , k with
respect to the profile Ω is directed inside the hole Ωi, see Fig. 1.
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The bar is fixed at x = 0 base, the opposite base x = � is twisted by an angle � α. We
also adopt the hypothesis that the cross-sections in the y, z-plane rotates as a rigid body,
in the case of a non-circular shape the cross-section is not planar, it is deflected in the
x-direction. We also suppose that the twist rate α is constant along the whole length of the
bar. Thus the problem can be reduced to the two-dimensional one.

The displacements u, v, w in directions x, y, z under these assumptions can be written

u = αf(y, z) , v = −αx z , w = αx y , (2)

where f(y, z) is an unknown function describing the deflection in x direction. It is denoted
by f (not ϕ as in [2]), since ϕ will be used in polar coordinates. The function f is supposed
to be differentiable. Then the corresponding strain (small deformation) tensor e = {eij} is

exy = eyx =
1
2

(
∂u

∂y
+
∂v

∂x

)
=

1
2
α

(
∂f

∂y
− z

)
,

exz = ezx =
1
2

(
∂u

∂z
+
∂w

∂x

)
=

1
2
α

(
∂f

∂z
+ y

)
,

(3)

the other components exx, eyy, ezz, eyz are zero. Simple computation yields

∂exz

∂y
− ∂exy

∂z
=
α

2

(
∂2f

∂y ∂z
+ 1 − ∂2f

∂z ∂y
+ 1
)

= α . (4)

The Hooke’s law of linear elasticity with the sheer modulus μ (in literature often denoted
by G) yields

τxy = 2μ exy = αμ

(
∂f

∂y
− z

)
, τxz = 2μ exz = αμ

(
∂f

∂z
+ y

)
, (5)

all the other components τxx, τyy, τzz, τyz are zero.

The equilibrium equations
∑

j ∂jτij = Fi with zero forces Fi reduce to

∂τxy

∂y
+
∂τxz

∂z
= 0 ,

∂τxy

∂x
= 0 ,

∂τxz

∂x
= 0 . (6)

The second and the third equality in (6) imply that τxy and τxz are independent of the
variable x, the first equality means that the vector field v = (−τxz, τxy) is irrotational, i.e.

rot(v) = (∂y, ∂z) × (−τxz, τxy) = ∂yτxy + ∂zτxz = 0 .

Let us recall that for a simply connected domain Ω the irrotational vector field v = (vy, vz)
is potential, i.e. there exists a function Φ(y, z) such that its gradient yields the vector field :
∇Φ = v. Thus the equalities in (6) imply existence of a function Φ(y, z) such that the only
nonzero stress components τxy and τxz are given by

τxy = αμ
∂Φ
∂z

, τxz = −αμ ∂Φ
∂y

. (7)

Vector (τxy, τxz) defined by (7) satisfies all the equilibrium equalities (6).
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Let us express the components exy and exz using (5) by means of Φ

exy =
1

2μ
τxy =

α

2
∂Φ
∂z

, exz =
1

2μ
τxz = −α

2
∂Φ
∂y

(8)

and insert it into the equation (4). Multiplying by 2/α we obtain

−ΔΦ ≡ −
[
∂2Φ
∂y2

+
∂2Φ
∂z2

]
= 2 in Ω . (9)

The equation has to be completed by boundary conditions. Since zero surface forces
are considered, on the boundary Γi the traction vector T = τ · n must have zero compo-
nents (Tx, Ty, Tz). Due to nx = 0 the components Ty, Tz are zero. Further inserting τxy, τxz

from (5) to equality Tx = τxx nx + τxy ny + τxz nz = 0 we obtain

Tx = τxy ny + τxz nz = τxy tz − τxz ty = μα

(
∂Φ
∂z

tz +
∂Φ
∂y

ty

)
= μα

∂Φ
∂t

= 0 . (10)

Therefore Φ is constant along each component Γi. In the case of simply connected profile Ω
the boundary ∂Ω = Γ0 is connected and we can choose Φ = 0 on Γ0.

2.2. Case of profile with holes

In this paper we study the profile Ω with holes, i.e. multiply connected domain Ω. In
this case the equalities (6) are necessary but not sufficient conditions for existence of the
potential Φ(y, z). The following vector field v serves as an counterexample :

v = (vy, vz) =
( −z
y2 + z2

,
y

y2 + z2

)

on a ring shape domain G = {[y, z] ∈ R2 | r2 < y2 + z2 < R2}, where 0 < r < 1 < R.
Simple calculation verifies that ∂yvz − ∂zvy = 0, i.e. the vector field v is irrotational in G.
But v has no potential on G. Indeed, if there were a potential Φ(y, z) then each line integral∫

C(vy dy + vz dz) over a closed curve C in G would equal to zero. Let C be the unit circle
y = cos s, z = sin s, s ∈ 〈0, 2π〉. Then y2 + z2 = 1, dy = − sin s ds, dz = cos s ds and

∫
C

(vy dy + vz dz) =

2π∫
0

[(− sin s)(− sin s) + cos s cos s] ds =

2π∫
0

1 ds = 2π ,

which does not equal to zero and thus contradicts potentiality.

To ensure that the irrotational vector field v = (vy, vz) is potential we need to verify that
its line integral is path independent, i.e. the line integral of v over any closed curve in Ω
equals to zero. Since for each simple connected domain irrotational vector field v is potential,
it is sufficient to test only the curves C which encircle each hole. In our case the vector field
v can be continuously extended to the closure Ω, thus the conditions

∫
Γi

(vy dy + vz dz) = 0
ensure existence of the potential Φ. Using dy = ty ds, dz = tz ds and (1), the condition can
be rewritten to∫

Γi

(vy dy + vz dz) =
∫
Γi

(vy ty + vz tz) ds =
∫
Γi

(−vy nz + vz ny) ds = 0 , i = 1, . . . , k . (11)
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Let us verify the condition ensuring existence of the potential Φ to (vy, vz) = (−τxz, τxy) :∫
Γi

(vy dy + vz dz) =
∫
Γi

(τxz nz + τxy ny) ds .

But τxy ny+τxz nz equals to traction Tx which is zero on each part of the boundary Γi. Thus
the vector field v has the potential Φ(y, z) such that the stress components can be written
in the form (7). The potential satisfies equation (10) and is constant on each part Γi of the
boundary ∂Ω.

As we already mentioned, in the case of simply connected domain Ω the boundary ∂Ω
has only one component and thus the only constant can be chosen to be zero.

In the case of multiply connected domain Ω we can choose the constant c0 = 0. Then we
have Φ = 0 on the outer boundary Γ0. On the other boundaries there are conditions Φ = ci
on Γi, i = 1, . . . , k with undetermined constants c1, . . . , ck.

According to the theory of elliptic partial differential equations for any choice of the con-
stants c1, . . . , ck we obtain different solutions Φ which yield different stress tensors. Since the
solution of the real torsion of a bar should have unique solution, some additional conditions
must be added.

Reformulating the problem for the Airy stress function Φ we lost connection to the
deflection function f . The boundary value problem for Φ should be completed by a condition
that the corresponding stress components τxy, τxz admit the deflection function f . From (5)
and (7) we have

∂f

∂y
(y, z) =

∂Φ
∂z

(y, z) + z ,
∂f

∂z
(y, z) = −∂Φ

∂y
(y, z) − y . (12)

It is the problem of finding a potential f(y, z) from its differential df = vy dy+ vz dz, where
in this case

vy =
∂Φ
∂z

(y, z) + z , vz = −∂Φ
∂y

(y, z) − y . (13)

Simple calculation with (9) verifies that the vector field (vy, vz) is irrotational :

rot v =
∂vy
∂z

− ∂vz
∂y

=
∂2Φ
∂z2

+ 1 +
∂2Φ
∂y2

+ 1 = ΔΦ + 2 .

In our case of multiply connected domain Ω we need to add the condition that each line
integral is path independent, which reads (11). Inserting from (13) we obtain

I ≡
∫
Γi

(−vy nz + vz ny) ds = −
∫
Γi

(
∂Φ
∂z

nz +
∂Φ
∂y

ny

)
ds−

∫
Γi

(z nz + y ny) ds = 0 .

Integrand of the first integral equals to the normal derivative of Φ. The second integral
will be transformed using the Gauss-Ostrogradski theorem

∫
Γi
v · (−n) ds =

∫∫
Ωi

div v dy dz.
In the introduced formula we changed the sign, since in the theorem the normal vector is
oriented outward Ωi but our normal vector n is taken outward of Ω, i.e. inward the hole Ωi :∫

Γi

(z nz + y ny) ds = −
∫∫
Ωi

(
∂z

∂z
+
∂y

∂y

)
dy dz = −

∫∫
Ωi

(1 + 1) dy dz = −2 |Ωi| ,
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where |Ωi| means the area of the domain Ωi. Thus with our orientation of the normal vector,
the potentiality condition I = 0 yields the additional conditions∫

Γi

∂Φ
∂n

ds = 2 |Ωi| , i = 1, . . . , k . (14)

As a potential, the deflection function f is given up to an additive constant. To ensure
uniqueness we add the zero mean condition∫∫

Ω

f(y, z) dy dz = 0 . (15)

We have obtained the following boundary value problem :

Problem (P). Find the unknown Φ ∈ C2(Ω) ∩ C1(Ω) and c1, . . . , ck such that

−ΔΦ = 2 in Ω ,

Φ = 0 on Γ0 ,

Φ = ci on Γi , i = 1, . . . , k ,∫
Γi

∂Φ
∂n

ds = 2 |Ωi| , i = 1, . . . , k .

(16)

2.3. Variational formulation of the problem

Let us briefly introduce the variational formulation of the problem (16). The approach
in our case looks for the minimizer of an energy functional J over a set S of admissible
potentials Φ.

An admissible potential Φ is defined on the domain Ω with holes Ω1, . . . ,Ωk. On the
surface Γi it is constant. Thus we can extent the potential Φ by this constant inside the
hole Ωi to Φ. According to the boundary conditions we can look for the potentials Φ
satisfying

Φ = 0 on Γ0 , Φ = ci in Ωi , i = 1, . . . , k

with undetermined constants ci. In the following we skip the bar in Φ and write only Φ.

Solution of the Poisson equation −ΔΦ = 2 in Ω minimizes the following functional

J(Φ) =
∫∫
Ω

[
1
2

(
∂Φ
∂y

)2

+
1
2

(
∂Φ
∂z

)2

− 2Φ

]
dy dz .

Since the gradient of a constant function on Ωi is zero on Ωi, the integral can be extended
to the whole Ω0. The functional contains integrals over the squared gradient thus we shall
suppose that the gradient of Φ is square integrable. More precisely we assume that it is
from the Sobolev space H1(Ω0) of measurable functions having square integrable generalized
derivatives on Ω0

H1(Ω0) =

⎧⎨
⎩Φ : Ω0 → R s. t.

∫∫
Ω0

[(
∂Φ
∂y

)2

+
(
∂Φ
∂z

)2

+ Φ2

]
dy dz <∞

⎫⎬
⎭ .
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To define the set S of admissible potentials we add the zero boundary condition on Γ0 and
constant condition in the holes Ωi :

S =
{
Φ ∈ H1(Ω0) s. t. Φ = 0 on Γ0 and Φ = ci in Ωi, i = 1, . . . , k

}
, (17)

where the constants ci are arbitrary.

Instead of detailed derivation of the variational formulation we set the problem and then
we prove that it is equivalent to the original one. The variational formulation reads :

Problem (V). Find Φ ∈ S such that it minimizes the functional

J(Φ) =
∫∫
Ω0

[
1
2

(
∂Φ
∂y

)2

+
1
2

(
∂Φ
∂z

)2

− 2Φ

]
dy dz (18)

over the set S, i.e. the inequality J(Φ) ≤ J(Ψ) holds for each Ψ ∈ S.

Theorem. Smooth (i.e. differentiable) solution of the Problem (V) solves the Problem (P).

Proof. The set S is a linear space. Let the functional J attain its minimum at Φ ∈ S.
Then also for each Ψ ∈ S the function ϕ : R → R defined by ϕ(t) = J(Φ + tΨ) attains its
minimum at t = 0, i.e. ϕ′(0) = 0. Let us compute ϕ′(t) = d

dtJ(Φ + tΨ) :

ϕ′(t) =
∫∫
Ω0

[(
∂Φ
∂y

+ t
∂Ψ
∂y

)
∂Ψ
∂y

+
(
∂Φ
∂z

+ t
∂Ψ
∂z

)
∂Ψ
∂z

− 2 Ψ
]

dy dz .

For t = 0 the condition ϕ′(0) = 0 yields∫∫
Ω0

[
∂Φ
∂y

∂Ψ
∂y

+
∂Φ
∂z

∂Ψ
∂z

− 2 Ψ
]

dy dz = 0

for each Ψ ∈ S. Since Φ is constant on each Ωi, its gradient ∇Φ is zero on Ωi and the
integral of ∇Φ is reduced to the integral over Ω only, integrals of Ψ over Ωi remain :

∫∫
Ω

[
∂Φ
∂y

∂Ψ
∂y

+
∂Φ
∂z

∂Ψ
∂z

− 2 Ψ
]

dy dz − 2
k∑

i=1

∫∫
Ωi

Ψ dy dz = 0 . (19)

To obtain the result we shall use of the following lemma :

Test lemma. Let a continuous function f on a domain Ω satisfy∫∫
Ω

f(y, z)ψ(y, z)dy dz = 0 (20)

for each ‘test function’ ψ on Ω from a set containing for each open ball B ⊂ Ω a continuous

function ψ which is positive in the ball B and zero in Ω \B.

Then the function f is zero in Ω.

To use the Test lemma we have to transform the integral into the form (20). Assuming
that Φ is twice differentiable, integration by parts yields∫∫

Ω

∂Φ
∂y

∂Ψ
∂y

dy dz =
∫
∂Ω

∂Φ
∂y

Ψny ds−
∫∫
Ω

∂2Φ
∂y2

Ψ dy dz ,
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where n = (ny, nz) is the unit normal vector outward with respect to Ω, i.e. it is oriented
inward to the hole Ωi, see Fig. 1. The boundary of Ω consists of Γ0 and curves Γi being
boundaries of the holes Ωi. Using Ψ = 0 on Γ0 we obtain

∫∫
Ω

∂Φ
∂y

∂Ψ
∂y

dy dz =
k∑

i=1

∫
Γi

∂Φ
∂y

Ψny ds−
∫∫
Ω

∂2Φ
∂y2

Ψ dy dz .

The analogous equality holds for the z derivatives. Since ∂Φ
∂y ny + ∂Φ

∂z nz is the normal deriv-
ative of Φ, the equality ϕ′(0) = 0 can be rewritten in the form

∫∫
Ω

(
−∂

2Φ
∂y2

− ∂2Φ
∂z2

− 2
)

Ψ dy dz +
k∑

i=1

⎡
⎣∫

Γi

∂Φ
∂n

Ψ ds− 2
∫∫
Ωi

Ψ dy dz

⎤
⎦ = 0 . (21)

Choosing Ψ which is nonzero only inside any ball B ⊂ Ω, the Test lemma yields −ΔΦ−2 = 0
inside Ω, which yields the first equation of the Problem (P). Using the obtained equality,
the first integral in (21) vanishes. Let us take any function Ψ nonzero, e.g. equals to 1 in
a point in Ωi and zero in the other holes. Then Ψ equals to 1 on Ωi. In this way we obtain

∫
Γi

∂Φ
∂n

Ψ ds− 2
∫∫
Ωi

Ψ dy dz =
∫
Γi

∂Φ
∂n

ds− 2
∫∫
Ωi

dy dz =
∫
Γi

∂Φ
∂n

ds− 2 |Ωi| = 0 ,

which implies the last condition of the Problem (P). The remaining two conditions follow
directly from the condition Φ ∈ S and the definition of S. Thus the differentiable solution Φ
of the Problem (V) is a solution of the Problem (P). �

The variational formulation enables us to prove the following

Theorem. The problem (V) admits unique solution.

The proof is based on the following general abstract existence theorem :

Theorem. Let S be a non-empty closed subspace of a Hilbert space H and let J be a con-

tinuous coercive strictly convex functional on S. Then the problem

Find Φ ∈ S minimizing the functional J over a set S

admits unique solution.

The proof consists of verifying the following steps :
– the set S is a nonempty closed subspace of the Hilbert spaceH1(Ω). Since its elements

are zero on Γ0, the functional

|Φ| =

⎡
⎣∫∫

Ω

((
∂Φ
∂y

)2

+
(
∂Φ
∂z

)2
)

dy dz

⎤
⎦

1/2

is equivalent to the norm ‖ · ‖ of H1(Ω) on S.
– J is defined and continuous on S.
– J is coercive, i.e. J(Φ) → ∞ as ‖Φ‖ → ∞.
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– J is strictly convex, i.e. for each different Φ0,Φ1 ∈ S and 0 < λ < 1 there is

J((1 − λ)Φ0 + λΦ1) < (1 − λ)J(Φ0) + λJ(Φ1) .

2.4. Application of the results in mechanics

Torque. Let us compute the torque M of the twisted bar. It is given by the formula

M =
∫∫
Ω

(−τxy z + τxz y) dy dz .

Inserting from (7) we obtain

M = −αμ
∫∫
Ω

(
∂Φ
∂z

z +
∂Φ
∂y

y

)
dy dz .

Integration by parts, using Φ = 0 on Γ0, Φ = ci on Γi yields

∫∫
Ω

∂Φ
∂y

y dy dz =
∫
∂Ω

Φ y ny ds−
∫∫
Ω

Φ
∂y

∂y
dy dz =

k∑
i=1

ci

∫
Γi

y ny ds−
∫∫
Ω

Φ dy dz .

Due to orientation of the normal n inward to Ωi we have
∫
Γi
y ny ds = − ∫∫Ωi

1 dy dz = −|Ωi|
and by analogous calculation for the z-part we get

M = 2αμ

⎛
⎝∫∫

Ω

Φ dy dz +
k∑

i=1

ci |Ωi|
⎞
⎠ .

We obtained dependence of the torque M on the twisting rate α

M = αμJ , (22)

where the moment of the cross-section J is given by

J = 2

⎛
⎝∫∫

Ω

Φ(y, z) dy dz +
k∑

i=1

ci |Ωi|
⎞
⎠ . (23)

Maximal stress. The maximum |T |max of the stress is a very important value in engineering
practice. It is often expressed in the form

|T |max =
M

W
=
αμJ

W
, (24)

where M = αμJ . The quantity W is called the twist section modulus. Equality (24) yields
definition of the twist section modulus W

W =
M

|T |max
=

αμJ

|T |max
(25)
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and for particular shapes of the profile it can be expressed by means of profile dimensions
and a shape constant. To compute W we have to find |T |max.

How to find the maximal stress? The stress force T in direction n is T = τ · n =
= τxy ny + τxz nz. Its modulus equals to |T | = [τ2

xy + τ2
xz ]1/2. Inserting from (7) we obtain

|T | = αμ

[(
∂Φ
∂y

)2

+
(
∂Φ
∂z

)2
] 1

2

= αμ |∇Φ| , (26)

i.e. the modulus of the stress is proportional to the slope of Φ. Since Φ satisfies −ΔΦ = 2,
the stress cannot attains its maximum inside the profile Ω.

We shall prove it by a contradiction. Let Φ attains its maximum slope |∇Φ| = m > 0
in a direction n in a point (y0, z0) inside Ω. Let us choose a shifted and rotated orthogonal
coordinates (ξ, η) with their origin in (y0, z0) and ξ oriented in direction n. Thus in the new
coordinates the partial derivatives of Φ∗ are ∂Φ∗

∂ξ (0, 0) = m and ∂Φ∗
∂η (0, 0) = 0.

Let us look at the second order derivatives. If ∂2Φ∗
∂ξ2 (0, 0) was positive, then for a small

ξ > 0 the value ∂Φ∗
∂ξ (ξ, 0) would be bigger than m. On the other hand if ∂2Φ∗

∂ξ2 (0, 0) < 0, then

for a small ξ < 0 again ∂Φ∗
∂ξ (ξ, 0) > m. Thus ∂2Φ∗

∂ξ2 (0, 0) = 0. Since the solution Φ(y, z) in the

new coordinates Φ∗(ξ, η) satisfies the same equation −ΔΦ∗ = 2 we obtain ∂2Φ∗
∂η2 (0, 0) = −2.

Thus in a neighborhood of the origin the second order Taylor polynomial reads

Φ∗(ξ, η) = mξ +
1
2
[
2 c ξ η − 2 η2

]
= mξ + c ξ η − η2 ,

where c = ∂2Φ∗
∂ξ ∂η (0, 0). Then in the neighborhood ∇Φ∗(ξ, η) = (m+ c η, ξ − 2 η) – up to the

third order terms – and the modulus of gradient

|∇Φ∗(ξ, η)| =
√

(m+ c η)2 + (ξ − 2 η)2

for some small (ξ, η) attains bigger value than m, which is the contradiction.

Let us derive the difference between open (simply connected) and closed (multiply con-
nected) profile.

Fig.2: Maximal stress in the open profile

Comparison of maximal stress in open and closed profile. Let us consider a profile being
a simply connected domain. Then on all parts of boundary Φ has zero value, see Fig. 2.
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Fig.3: Maximal stress in the closed profile

From the equation −ΔΦ = 2 one can estimate, that cross section of Φ will be approximately
a parabola Φ(t) = t (d−t), where d is a thickness of the profile. The stress will be proportional
to the derivative Φ′(t) = d − 2 t which attains its maximum d. Thus the stress maximum
will be bigger in thicker places of the profile than in narrower places, i.e. when d1 > d2.

The situation is different in the case of a closed profile with a hole, see Fig. 3. On the
outer part of the profile boundary the value of Φ is zero and on the inner part it is a positive
value h. In this case the cross section of Φ on a segment is approximately a parabola
Φ(t) = (h/d + d) t − t2, where h > d2. The derivative Φ′(t) = h/d + d − 2 t attains its
maximum h/d+ d in t = 0. Thus bigger diameter d means smaller stress.

2.5. Summary of the results

Let us summarize the results. In case of the profile without holes we compute the Airy
stress function Φ as solution of the boundary value problem (9) with boundary condition
Φ = 0 on the boundary Γ0. In case of profile with holes, i.e. multi-connected domain, the
Airy stress function Φ is given as the solution of Problem (P) consisting of the Poisson
equation on Ω, zero boundary condition on the outer boundary Γ0, and on each inner
boundary Γi, i = 1, . . . , k value of Φ equals to an unknown constant ci completed with the
integral boundary condition (14), see (16).

The Airy stress function Φ can be computed from the equivalent variational formulation
Problem (V). It consists of looking for a minimum of the variational functional J given
by (18) over the set of admissible potentials S. The variational formulation, in addition,
yields existence and uniqueness of the potential Φ.

Then (23) yields the torsion constant J and (22) describes dependence of the twist
rate α on the torque M . The only non-zero components τxy, τxz of the stress tensor can be
computed from Φ by (7).

The displacement vector (u, v, w) is given by (2) with the deflection function f . It can
be computed from (12) as a potential of a given vector field. In the case of multi-connected
profile Ω, existence of the potential f is ensured by the integral boundary condition (14).
Condition (15) yields uniqueness of the deflection f .

Let us complete the theory by dimensions of the quantities. The displacements u, v, w
and deflection function f are in meters [m], strain tensor e is dimensionless, twist rate α is
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in [m−1], Airy stress function Φ is in [m2], moment of the cross-section J in [m4], the twist
section modulus W in [m3], the sheer modulus μ, the stress tensor τ , the stress vector T
in [Nm−2] and the torque M in [Nm].

3. Examples

In general, finding the exact solution to the Problem (P) is not simple. Thus we shall
deal with the ring profile which was already solved in [2]. We shall compare results for this
complete ring (annulus) with those of a ‘broken’ ring which is in fact a profile without hole.
We derive also the solution for the incomplete ring of the angle β (annulus sector). We shall
use the polar coordinates (ρ, ϕ) given by y = ρ cosϕ, z = ρ sinϕ. In the end we shall deal
also with elliptic ring profiles.

3.1. Ring profile

Let us consider a ring profile Ω with the outer radius R and the inner radius r, 0 < r < R,
i.e. Ω = {[y, z] ∈ R2 | r2 < y2 + z2 < R2}. In this case the solution can be taken from the
case of full circle. Let us denote λ = r/R, i.e. r = Rλ. Let us take the function

Φ(y, z) =
1
2

(R2 − y2 − z2) =
1
2

(R2 − ρ2) , (27)

which is the solution to problem on the full circle profile Ω0 = {[y, z] ∈ R2 | y2 + z2 < R2}.

Fig.4: Ring profile, the corresponding stress function Φ
and the zero deflection function f

Simple computation verifies that the function Φ satisfies the problem (16) with constant
c1 = 1

2 (R2 − r2) and |Ω1| = π r2. Indeed, the stress function Φ, in the polar coordinates
Φ∗(ρ, ϕ) = 1

2 (R2 − ρ2) on Γ1 has normal derivative ∂
∂nΦ∗(r, ϕ) = − ∂

∂ρΦ∗(r, ϕ) = r and thus

∫
Γ1

∂Φ
∂n

ds = |Γ1| · r = 2π r · r = 2 |Ω1| .

Let us calculate the other quantities. Using (23) simple computation yields

J = 2

⎛
⎝∫∫

Ω

Φ(y, z) dy dz + c1 |Ω1|
⎞
⎠ =

π

2
(R4 − r4) =

π R4

2
(1 − λ4) .
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Since the maximum of the gradient ∇Φ is on the outer boundary, using (26) and (25), the
maximum stress |T |max and the twist section modulus W equals

|T |max = αμR , W =
π

R
(R4 − r4) = π R3 (1 − λ4) .

Finally (16) yields ∂f
∂y = 0 and ∂f

∂z = 0, thus the deflection f is constant. Assuming zero
mean value of f there is f(y, z) = 0, as can be expected.

3.2. Incomplete ring profile

In order to compare the results for the closed profile with results for an analogous open
profile, we calculate solution to the problem for the β-angle segment of the previous ring,
see Fig. 5. It is a simply connected profile without hole.

Fig.5: The angle segment ring profile in Cartesian and the polar coordinates

We transform the problem (16) into the polar coordinates (ρϕ). The transformed func-
tion Φ in the polar coordinates will be denoted by Φ∗, i.e.

Φ∗(ρ(y, z), ϕ(y, z)) = Φ(y, z) .

The profile Ω in the polar coordinates is Ω∗ = (r,R) × (−β/2, β/2). Since the Laplace
operator Δ = ∂2

y + ∂2
z in the polar coordinates reads ∂2

ρ + 1
ρ ∂ρ + 1

ρ2 ∂
2
ϕ, we obtain the

equation
∂2Φ∗

∂ρ2
+

1
ρ

∂Φ∗

∂ρ
+

1
ρ2

∂2Φ∗

∂ϕ2
= −2 on Ω∗ (28)

completed with boundary conditions Φ∗ = 0 on the arches Γ∗
r and Γ∗

R, i.e.

Φ∗(r, ϕ) = Φ∗(R,ϕ) = 0 for ϕ ∈ (−β
2 ,

β
2 ) (29)

and also Φ∗ = 0 on both radiuses Γ∗
±β/2, i.e.

Φ∗(ρ,−β
2 ) = Φ∗(ρ, β

2 ) = 0 for ρ ∈ (r,R) . (30)

Approximate solution

The solution Φ(y, z) = 1
2 (R2 − y2 − z2) of the ring profile, see (27), in polar coordinates

Φ∗(ρ, ϕ) = 1
2 (R2 − ρ2) satisfies Φ∗ = 0 on Γ∗

R. The simplest possibility is to correct it by
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a multiple of the elementary solution of the Laplace equation, in polar coordinate ln(ρ), such
that Φ∗ = 0 also on Γ∗

r . Simple calculation yields (with the ratio λ = r/R < 1, lnλ < 0)

Φ∗
0(ρ, ϕ) =

1
2

[
R2 − ρ2 +

R2 − r2

− ln(r/R)
ln
ρ

R

]
=
R2

2

[
1 − ρ2

R2
+

1 − λ2

− lnλ
ln
ρ

R

]
. (31)

The function Φ∗
0 satisfies the equation and zero boundary condition on both Γ∗

r and Γ∗
R, the

boundary conditions are not satisfied on Γ∗
±β/2.

Using (23) we can compute the corresponding approximate moment J0

J0 = 2
∫∫
Ω

Φ0(y, z) dy dz = 2

R∫
r

⎛
⎜⎝

β/2∫
−β/2

Φ∗
0(ρ, ϕ) ρ dϕ

⎞
⎟⎠ dρ ,

which yields

J0 =
β

4

[
R4 − r4 +

(R2 − r2)2

ln(r/R)

]
=
β R4

4

[
1 − λ4 − (1 − λ2)2

− lnλ

]
. (32)

Maximum stress is in the middle point (r, 0) of the inner arch Γr. In the polar coordinates
|∇Φ0(r, 0)| = |∂Φ∗

0
∂ρ (r, 0)|. According to (26) we have

|T |max = αμ
∂Φ∗

0

∂ρ
(r, 0) = αμR

[
1 − λ2

−2λ lnλ
− λ

]
.

Finally let us compute the approximate deflection f0. The system (12) in the polar coordi-
nates reads

∂f∗

∂ρ
=

1
ρ

∂Φ∗

∂ϕ
,

∂f∗

∂ϕ
= −ρ ∂Φ∗

∂ρ
− ρ2 . (33)

Inserting for Φ∗
0 we obtain

∂f∗
0

∂ρ
= 0 ,

∂f∗
0

∂ϕ
= −R2 1 − λ2

−2 lnλ

and integration with condition (15) yields

f∗
0 (ρ, ϕ) = −R2 1 − λ2

−2 lnλ
ϕ . (34)

Exact solution

To satisfy the boundary conditions (29) on Γ∗
R and Γ∗

r , in the previous approach we
added two additional terms to the term − 1

2 ρ
2 and obtained an approximate solution Φ∗

0.
To obtain the exact solution we shall use the Fourier series method with a different strategy.
We start with the particular solution Φ∗

p

Φ∗
p(ρ, ϕ) =

ρ2

2

[
−1 +

cos(2ϕ)
cosβ

]
, (35)
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which satisfies the equation (28), boundary conditions (30) on Γ∗
±β/2 for any angle β ∈ (0, 2π)

except for two cases β = π/2 and β = 3π/2, when cosβ = 0. We shall deal with these two
singular cases later. Then we decompose the solution Φ∗ = Φ∗

p − Φ∗
h, where the subtracted

homogeneous part Φ∗
h should satisfy the Laplace equation in the polar coordinates

∂2Φ∗
h

∂ρ2
+

1
ρ

∂Φ∗
h

∂ρ
+

1
ρ2

∂2Φ∗
h

∂ϕ2
= 0, (36)

zero boundary conditions on Γ∗
±β/2 and the condition Φ∗

h = Φ∗
p on Γ∗

R and Γ∗
r . It will be

looked for in the form of a series of functions with separated variables

Φ∗
h(ρ, ϕ) =

∑
k

ck Fk(ρ)Gk(ϕ) ,

where each product Fk Gk satisfies the Laplace equation (36) and boundary conditions
on Γ∗

±β/2. The constants ck will be chosen such that the combination
∑

k ck Fk Gk satisfies
the boundary condition on Γ∗

R and Γ∗
r . Inserting F (ρ)G(ϕ) into the Laplace equation (36)

and multiplying it with ρ2/(F (ρ)G(ϕ)) we obtain

ρ2 F ′′(ρ) + ρF ′(ρ)
F (ρ)

+
G′′(ϕ)
G(ϕ)

= 0 .

Since the first term is independent of ϕ and the second is independent of ρ, both terms are
constant (denoted by ±κ) and we obtain two ordinary differential equations

ρ2 F ′′(ρ) + ρF ′(ρ) − κF (ρ) = 0 , G′′(ϕ) + κG(ϕ) = 0 .

General solution to the second equation is G(ϕ) = a1 cos(pϕ) + a2 sin(pϕ). Boundary con-
ditions Φ∗

h = 0 on Γ∗
±β/2 yield G(−β/2) = G(β/2) = 0 which is satisfied for a2 = 0 and

cos(±p β/2) = 0. The last equality gives p β/2 being equal to odd multiples of π/2. The
constant a1 can be chosen a1 = 1. In this way we obtain a sequence of solutions

Gk(ϕ) = cos(pk ϕ) , pk =
(2k + 1)π

β
, κk = p2

k , k = 0, 1, 2, 3, . . . (37)

Let us turn our attention to the first equation. It is the second order Euler’s equation
x2 y′′ + a1 x y

′ + a0 y = 0. Its solution can be found in the form y(x) = xν , where ν is a root
of the polynomial P (ν) = ν(ν− 1)+ a1 ν+ a0. In our case the polynomial is P (ν) = ν2 −κk

and its roots are ν1,2 = ±√
κk = ±pk. Thus the general solution is

Fk(ρ) = b1 ρ
pk + b2 ρ

−pk .

According to the boundary conditions on Γ∗
R and Γ∗

r let us we choose the constants b1, b2
such that Fk(R) = 1

2 R
2 and Fk(r) = 1

2 r
2. Simple computation with r = Rλ yields

Fk(ρ) =
R2

2

[
1 − λpk+2

1 − λ2pk

( ρ
R

)pk

+
λpk+2 − λ2pk

1 − λ2pk

(
R

ρ

)pk
]
. (38)

Then all the boundary conditions Φ∗
h = Φ∗

p on Γ∗
R and Γ∗

r will be satisfied if

∞∑
k=1

ck cos(pk ϕ) = f(ϕ) ≡ −1 +
cos(2ϕ)
cosβ

, ϕ ∈
(
−β

2 ,
β
2

)
.
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We have to expand the function f(ϕ) = −1 + cos(2ϕ)/ cosβ into the cosine Fourier series
with basis {Gk}∞k=0, where Gk(ϕ) = cos(pk ϕ). Since the basis is orthogonal on the interval
(−β/2, β/2), the coefficients ck can be computed by the formula, see e.g. [7], Section 16.3

ck =
1

‖Gk‖2
L2(I)

∫
I

f(ϕ)Gk(ϕ) dϕ =
2
β

β/2∫
−β/2

[
−1 +

cos(2ϕ)
cosβ

]
cos(pk ϕ) dϕ .

Both f and Gk are even functions, thus we use
∫ β/2

−β/2
f(ϕ)Gk(ϕ) dϕ = 2

∫ β/2

0
f(ϕ)Gk(ϕ) dϕ.

Using the formula cosx cos y = 1
2 [cos(x+y)+cos(x−y)] the second term can be rewritten

to cos(2ϕ) cos(pk ϕ) = 1
2 cos((pk + 2)ϕ) + cos((pk − 2)ϕ) and integration yields

ck = − 4
β

[
sin(pk ϕ)

pk

]β/2

0

+
2

β cosβ

[
sin((pk + 2)ϕ)

pk + 2
+

sin((pk − 2)ϕ)
pk − 2

]β/2

0

.

For pk = (2k+1)π/β we have sin(pk β/2) = sin(2k+1)π/2 = (−1)k and sin((pk ±2)β/2) =
= sin((2k + 1)π/2 ± β) = (−1)k cosβ. Thus by simple calculation we obtain

ck = − 4 (−1)k

π (2 k + 1)
+

2 (−1)k

(2 k + 1)π + 2 β
+

2 (−1)k

(2 k + 1)π − 2 β
=

=
16 (−1)k β2

(2 k + 1)π [(2 k + 1)2 π2 − 4 β2]
.

(39)

The exact solution to the problem is

Φ∗(ρ, ϕ) =
ρ2

2

[
−1 +

cos(2ϕ)
cosβ

]
−

∞∑
k=0

ck Fk(ρ) cos(pk ϕ) , (40)

where ck are given by (39), pk by (37) and Fk(ρ) by (38). For β in (0, 2π) except for π/2,
3π/2 the Weierstrass convergence criterion yields uniform converge of the series. Indeed, for
ρ ∈ (r,R) in (38) ρ/R ≤ 1 and λR/ρ = r/ρ ≤ 1, the functions Fk(ρ) are bounded by R2,
Gk(ϕ) ≤ 1 and ck decays at rate k−3.

Fig.6: Stress function Φ and deflection function for 5π/4-angle
segment ring profile (annulus sector)
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Let us compute the moment J . In the polar coordinates (ρ, ϕ) it is given by

J = 2
∫∫
Ω

Φ(y, z) dy dz = 2
∫∫
Ω∗

Φ∗(ρ, ϕ) ρ dρ dϕ

and simple computation yields

J =
1
4
R4 (1 − λ4) (−β + tanβ) − 2

∞∑
k=0

ck

R∫
r

Fk(ρ) ρ dρ

β/2∫
−β/2

Gk(ϕ) dϕ ,

where
R∫

r

Fk(ρ) ρ dρ =
R4

2

[
(1 − λpk+2)2

(1 − λ2pk)(pk + 2)
+

(λ2 − λpk)2

(1 − λ2pk)(pk − 2)

]

and
β/2∫

−β/2

Gk(ϕ) dϕ =
2β

(2k + 1)π
(−1)k ,

which yields

J =
R4 (1 − λ4)

4
(tanβ − β) − 25R4 β3

π2

∞∑
k=0

(1−λpk+2)2

(1−λ2pk ) (pk+2)
+ (λ2−λpk )2

(1−λ2pk ) (pk−2)

(2k + 1)2 [(2k + 1)2 π2 − 4 β2]
. (41)

Similarly, for β ∈ (0, 2π) \ {π/2, 3π/2} one can verify that the series converges.

Due to the symmetry the maximal stress is attained at the point [r, 0], i.e.

|T |max = αμRλ

[(
−1 +

1
cosβ

)
− 1

2

∞∑
k=0

ck pk
2λpk−2 − λ2pk − 1

1 − λ2pk

]
. (42)

Finally let us compute the deflection f . The system (12) in the polar coordinates has
the form (33). Inserting for Φ∗ we obtain

∂f∗

∂ρ
= −ρ sin(2ϕ)

cosβ
+

∞∑
k=0

ck
Fk(ρ)
ρ

pk sin(pkϕ) ,

∂f∗

∂ϕ
= −ρ2 cos(2ϕ)

cosβ
+

∞∑
k=0

ck F
′
k(ρ) ρ cos(pkϕ) .

Integrating each term separately we obtain

f∗(ρ, ϕ) = −ρ
2 sin(2ϕ)
2 cosβ

+

+
∞∑

k=0

R2ck
2

[
1 − λpk+2

1 − λ2pk

( ρ
R

)pk − λpk+2 − λ2pk

1 − λ2pk

(
R

ρ

)pk
]

sin(pk ϕ).
(43)
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Singular cases β = π/2 and β = 3π/2

Let us look at the singular cases. In the first case β = π/2 and cosβ = cos(π/2) = 0
and the term in (40) is undefined due to zero in the denominator. At the same time also
the coefficient c0 has also zero π − 2 β = 0 in the denominator of the third term of (39).
Let us process the sum of these two singular terms. Nontrivial computation proves that
limit β → π/2 of sum of these two terms is finite. In general, formula for the limit is rather
complicated, let us introduce the simpler case ρ = R

lim
β→π

2

[
ρ2 cos(2ϕ)

2 cosβ
− c0(β)F0(ρ)G0(φ)

]
ρ=R

= R2 3 cos(2ϕ) − π + 4ϕ sin(2ϕ)
2π

.

The other terms are finite and form a converging series.

The same problem appears in the second case, when β = 3π/2. Again cosβ =
= cos(3π/2) = 0 and the coefficient c1 has 3π − 2β = 0 in the denominator. A nontri-
vial computation proves that limit β → 3π/2 of sum of these two terms is finite. In case
ρ = R the limit is

lim
β→ 3π

2

[
ρ2 cos(2ϕ)

2 cosβ
− c1(β)F1(ρ)G1(φ)

]
ρ=R

= −R2 3 cos(2ϕ) + 6 π + 4ϕ sin(2ϕ)
6π

.

Similar problem appears in (41) for J , (42) for |T |max and (43) for deflection. In all these
situations pair of the singular terms must be replaced by the corresponding limit.

3.3. Comparison of the approximative and the exact solution

Let us compare the approximative and the exact solution of angular segment of the ring
profile. Approximate Airy stress function Φ0 is given by (31), the exact Φ is given by (40).
For λ = 1/2 and β = 2π the functions are plotted on Fig. 7.

More instructive is to compare the moments J for various angle β. Constants
K = K(β, λ) of J = K · R4 for constant ratio λ = 1/2 are in the table 1 and for vari-
ous ratios λ = r/R with constant angle β = π in the table 2.

Fig.7: The approximate and the exact function Φ and the
exact deflection function for 2π-angle ring profile

Angle β π
8
≈ 22.5◦ π

4
≈ 45◦ π

2
≈ 90◦ π ≈ 180◦ 3π

2
≈ 270◦ 2π ≈ 360◦

Approximate 0.01237 0.02474 0.04947 0.09895 0.1484 0.19790
Exact 0.00270 0.01197 0.03600 0.08545 0.1349 0.18440

Tab.1: Constants of the moment J for various angle β and ratio λ = 1/2
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Ratio λ = r/R 0.3 0.5 0.7 0.8 0.9 0.95
Approximate 0.2388 0.0989 0.02408 0.00755 0.000995 0.0001276
Exact 0.1843 0.0855 0.02237 0.00721 0.000974 0.0001263

Tab.2: Constants of the moment J for various ratio λ = r/R and angle β = π ≈ 180◦

3.4. Comparison of solutions for the ring and the broken ring

Let us briefly compare the complete ring profile, which is a double connected domain,
and a broken ring profile, which is a simply connected domain. The corresponding stress
functions Φ are on Fig. 4b and Fig. 7b, the deflections f are on Fig. 4c and Fig. 7c.

Finally we can compare the moment J for different ratios λ with full and broken ring,
constants K = K(β, λ) of J = K · R4 for different ratio r/R are in the table 3.

Ratio λ = r/R 0.3 0.5 0.7 0.8 0.9 0.95
Full ring 1.5581 1.4726 1.936 0.92740 0.540197 0.291373
Broken ring (exact) 0.4231 0.1844 0.0464 0.01476 0.001969 0.000254

Tab.3: Constants for the moment J of the complete (unbroken)
and broken ring for various ratio λ = r/R

3.5. Elliptic ring

Similar study can be made for elliptic rings, i.e. for the profile

Ω =
{

[y, z] ∈ R2
∣∣∣ λ2 <

y2

a2
+
z2

b2
< 1
}
,

where a, b > 0 are the half-axes of the ellipse and λ > 0 is ratio of the inner and the outer
ellipse radius. Its outer boundary Γ0 is the ellipse with half-axes a and b and the inner
boundary Γ1 is the ellipse with half-axes a λ and b λ encircling the hole Ω1. Again, we can
use the stress function from the full elliptic profile

Φ(y, z) =
a2 b2

a2 + b2

(
1 − y2

a2
− z2

b2

)
.

We shall use the elliptic polar coordinates y = a ρ cosϕ and z = b ρ sinϕ with the Jaco-
bian a b ρ. The profile Ω is converted to Ω∗ = (λ, 1)× (−π, π). Let us compute the moment.
With c1 = (1 − λ2) a2 b2/(a2 + b2) and |Ω1| = λ2 π a b we obtain

J = 2
∫∫
Ω∗

Φ∗(ρ, ϕ) a b ρ dρ dϕ+ 2 c1 |Ω1| = π
a3 b3

a2 + b2
(1 − λ4) .

For a > b the maximal stress |T |max = 2αμa2 b/(a2 + b2) is in points [0,±b] and the
deflection function is f(y, z) = −y z (a2 − b2)/(a2 + b2).

Fig.8: Elliptic (a:b=2:1) ring profile and its stress Φ and deflection f function
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4. Conclusion

The first part of the paper dealt with the mathematical model of torsion of a bar with
profile with holes. It led to a boundary value problem for the Airy stress function Φ. Case
of the profile with holes, i.e. multiply connected domain, has brought several difficulties :
the constants ci on the boundary of holes were undefined which led to loss of uniqueness of
the solution Φ. The problem has been solved by potentiality conditions for the deflection
function f which led to the integral condition on boundary holes and ensured uniqueness of
solutions to the Problem (P). It also has given physical meaning to these additive integral
conditions coming from the variational formulation.

The second part was devoted to examples. To compare solutions of the complete ring
and the broken ring profiles we derived exact solution to angular segments of ring (annulus
sector) profile in form of a Fourier series. Two angles β = π/2 and β = 3π/2 led to problems :
two members of the series were undefined – zero denominator. Fortunately their sum has
finite limit for β tending to these critical values. Thus we have obtained solution for any
angle β ∈ (0, 2π〉. The approximate solutions which do not satisfy zero boundary condition
on radiuses Γ±β/2 of the ring segment are easy to compute. But, according to numerical
experiments in Tables 1,2, they yielded higher values, particularly for small angles. Table 3
also showed that solution to complete (unbroken) and broken ring profiles differ substantially,
as could be expected. In the end the elliptic ring profile was computed.
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