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AEROELASTICITY OF SLENDER PLEXIGLASS FACADES

Alexander Tesár*

Assessment of ultimate aeroelastic response of slender facades equipped with thin
plexiglass sheets. The wave approach is used for modeling of aeroelastic wind forcing.
The analysis of structural response is based on the transient dynamics. Some theo-
retical approaches are specified with experimental verification in the wind canal. The
comparison of numerical and experimental approaches is made in order to demon-
strate the efficiency of the procedures suggested.
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1. Introduction

The development of suitable techniques for the assessment of ultimate aeroelastic be-
haviour of slender facade walls equipped with thin glass or plexiglass sheets is the focus
of efforts in present paper (Figs. 1 and 2). Sophisticated aeroelastic analysis is required in
order to answer the questions associated with reliability of such structures.

Slender facades of above type are prone to wind induced vibrations for various reasons.
Some of the issues considered in their wind resistant design are mentioned as follows :

1. Wind turbulences force the facade with a considerable power. The forced movements
and sound effects owing to turbulences and associated mechanisms are stochastic in
nature.

Fig.1: Cheese House in Nitra, Slovakia
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Fig.2: Cheese House in Nitra, Slovakia – detailed view

2. Slender facade sheet can produce a strong vortex wake associated with aerodynamic
drag force. Depending on the wind speed and geometry of the sheet, the shedding
of vortices is more or less regular with shedding periods inversely proportional to
the wind speed. In resonant conditions the structure’s oscillation can control the
rhythm of the vortex shedding and limited amplitude vibrations occur. However,
aside the known vortex trail type excitation the more general types of aerodynamic
forcing can appear there. The possible re- attachement of separated flow, the vortices
generated by the local geometry and by the movement of the facade sheet contribute
to aerodynamic forces and induced sounds experienced by the structure.

3. Aerodynamic forces proportional to such movement can produce self-induced diver-
gent vibrations at high wind speeds. In theoretical treatment the concepts of aero-
dynamic damping and aerodynamic stiffness are applied frequently. In the design
is to be avoided that absolute value of negative aerodynamic damping exceeds the
damping force producing oscillatory torsional or across-wind flexural mode instabi-
lity. Associated critical wind speed is the flutter velocity and corresponding circular
frequency is termed as flutter frequency of structure.

4. At the onset of divergence the aerodynamic instability of structure can be initiated.

In this paper the wind induced structural phenomena are treated by transient dynamics.
The aeroelastic forcing is studied adopting the wave propagation approach. The goal is to
develop the approach based on combined transient dynamics versus forcing wave propagation
for the assessment of ultimate aeroelastic response of slender facade sheets.

In order to manage the problem ‘garbage in, garbage out’ in the analysis, the strategy
suggested works with the databasis of input data obtained by experimental tests in the wind
canal. Such databasis is adopted for virtual assessment of the problem.

2. Analysis of aeroelastic phenomena

The time and frequency domains are two frequently used approaches for aeroelastic
assessment of the facade sheets studied. For the loads changing in time the first approach
leads to convolution type time integrals, while the second one adopts the Fourier transformed
equations of motion with the frequency as fundamental parameter. For the specification
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of aeroelastic loads in time domain the indicial aerodynamic functions are applied. The
choice of method is complementary, because the flutter derivatives and indicial aerodynamic
functions perform the Fourier transform relationships between each other. The wind canal
tests of the scale models are to be carried out in order to specify such aeroelastic forcing.

In scope of the spectral analysis the frequency-domain method is applied to the problems,
where the statistical properties of turbulences are given by frequency dependent spectral
densities and coherence functions. The advantages of the frequency domain method for
modeling of aeroelastic action of the facade sheets are obvious. The flutter derivatives
appearing are the functions of frequency of vibration and are directly applied to the Fourier-
transformed equations of motion. The adoption of flutter derivatives in time domain is
restricted to harmonic motion only, while in frequency domain they hold for the analysis of
an arbitrary motion. The Fourier-transformed equations of motion are given by

(−ω2 M + iωC + K)X(ω) = [iωCAe(ω) + KAe(ω)]X(ω) + Fb(ω) , (1)

where ω is the circular frequency, X and Fb are the vectors of the Fourier transform of nodal
degrees of freedom and of nodal forcing, respectively, and i is the imaginary unit. Here, M,
C and K are mass, damping and stiffness matrices, respectively, being related to mechanical
properties of the vibration system studied, CAe(ω) is the aerodynamic damping matrix and
KAe(ω) is the aeroelastic stiffness matrix defined in flutter derivatives.

The goal is to develop the frequency-domain model for flutter, vortex-induced and
turbulence-induced vibrations of slender plexiglass sheets studied. The aerodynamic input
parameters are studied on the section models in the wind canal tests.

3. Generalized analysis of motion

The dynamic displacements of the facade sheets studied are considered as a family of
mappings from one region in space and time into another one (see Refs. [1]–[3]). The current
configuration is completely defined by the location of displacements in time. The variations
of configurations are assumed to be continuous and new boundaries do not appear during
deformation. Each new position is defined in relation to a reference position assumed.
Adopting the Cartesian coordinates x, y, z and displacements u, v, w, the corresponding
Green strain tensor is defined by
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In order to establish the constitutive equations with Green strain tensor a stress tensor
with the same reference is needed. A symmetric one will be advantageous in present appli-
cation. The second Piola-Kirchhoff stress tensor denoted as Sij has the desired properties.
The equilibrium equation for deformed configuration, stated by the second Piola-Kirchhoff
stress tensor, is given by

Sij = g(Eij) , (3)

where g is a single valued function of the Green strain tensor Eij .
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Considered is the facade shet with volume, surface area and mass density in an initial
configuration given by V , S and �o, respectively. The body forces per unit mass are given
by Fo,i and the surface tractions are specified by the force components Ti.

The facade sheet in equilibrium is subjected to a virtual displacement δui being kine-
matically consistent with the boundary conditions assumed. The balance of virtual work is
given by ∫

Sij δEij dV −
∫
Ti δui dS −

∫
Pi δui dV = 0 , (4)

with
Pi = �o Fo,i . (5)

Equation (4) states that among all kinematically admissible displacement fields ui the
actual one renders the value of the total potential energy stationary.

The incremental form of corresponding variational principle is given by
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where superscripts (1) and (2) denote two configurations studied.

The components of surface tractions and body forces refer to the same reference config-
uration and may therefore be subtracted directly to give

ΔTi = T
(2)
i − T

(1)
i , (8)

ΔPi = P
(2)
i − P

(1)
i . (9)

The variations of two displacement fields are chosen to be the same

δui = δu
(1)
i = δu

(2)
i . (10)

An incremental form of the virtual work equations is then obtained by subtracting Eqs. (6)
and (7), giving

∫
(S(2)
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ij − S

(1)
ij δE
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ΔTi δui dS −

∫
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and considering the virtual variations of both configurations analysed.

When the work done by inertial and damping forces on virtual displacements δui is added
to Eq. (4), the virtual work principle for the problem studied is given by

∫
Sij δEij dV +

∫
� ui δui dV +

∫
Ci ui δui dV −

∫
Ti δui dS −

∫
Pi δui dV = 0 , (12)

where � and C are mass and damping terms, respectively.
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The turbulences in the air flow are described by instantaneous wind speed as function of
space and time, with mean and fluctuation components given by

u(x, y, z, t) = U(x, y, z) + u′(x, y, z) , (13)

v(x, y, z, t) = V (x, y, z) + v′(x, y, z) , (14)

w(x, y, z, t) = W (x, y, z) + w′(x, y, z) . (15)

The mean values of U , V , W are the results of averaging of the wind speeds and fluctuating
components in a certain time interval.

The turbulence scales of the instantaneous wind speed are the measures of representative
dimensions of vortices induced by the turbulences inside of the air flow. They describe the
turbulences which ‘wrap’ the facade sheet in a certain time.

The assessment of such a turbulence motion starts with the specification of the correlation
functions of fluctuating components which may be located in longitudinal, transversal and
vertical directions. The characteristics of the air flow are well defined if the correlation
functions are specified for the mean streamwise components longitudinally and transversally.
The correlation in time is specified by formulae

�u(i) u(j)(τ) =
Ru(i) u(j)(τ)√

(u′)2(t)
√

(u′)2(t+ τ)
, (16)

Ru(i) u(j)(τ) = ui(t).uj(t+ τ) = lim
T→∞

1
T

∫
ui(t).uj(t+ τ) dt . (17)

Eq. (17) specifies the covariance function of the process u(t) given by measuring in two space
points taking into account the time difference τ (see [4], [5] and [6]).

According to Taylor’s hypothesis ([4] the inter-correlation between any of the fluctuating
parts, discarding the wind instantaneous speed measured in two points being separated
by distance Δx in direction of the wind flow, is equal with the auto-covariance for the
period studied. The inter-correlation functions give information concerning the turbulences
in direction of the wind action. The existence of the mean values of the wind speed inside of
the turbulent flow is given by idiom that in a point i the turbulence has a certain periodicity
in time. After a certain period the phenomenon repeats itself in space. These two idioms
specify the turbulence scales in time and space. The turbulence scales define the frequency
of the wind gusts. The integral length scales correspond to spatial nature of the wind action,
specifying the longitudinal, lateral and vertical scales given by

Lx =
∫
�u′(i) u′(j)(Δx, 0, 0) d(Δx) , (18)

Ly =
∫
�u′(i) u′(j)(0,Δy, 0) d(Δy) , (19)

Lz =
∫
�u′(i) u′(j)(0, 0,Δz) d(Δz) (20)

with integration from 0 until ∞. The most important of these three is the longitudinal scale;
the other two are its derivatives. The time scale of turbulence is defined by

ΛT =
∫
�u′(i)u′(j)(τ) dτ . (21)
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According to above Taylor’s hypothesis, the longitudinal scale of a turbulence may be spe-
cified by the time scale and by the mean wind speed V in the streamwise direction given
by

Lx = V.ΛT , (22)

The studies for determination of the turbulence scale, both in natural scale and in laboratory,
have produced the empirical Davenport’s formula

ΛT = 0.084
L

V
, (23)

given in sec, where L is the longitudinal scale of the wind speed and V is the mean wind
speed.

4. Transient dynamics

The assessment of ultimate structural response is based on the application of updated
Lagrangian formulation of motion with reference state taken as current configuration being
continuously updated in the deformation process. A new reference frame is established at
each stage along updated deformation path of ultimate response. An incremental form of
equations of motion is obtained by considering the dynamic equilibrium at two configurations
a time step Δt apart. The increments of forcing balance the dynamic equilibrium in time
t+ Δt by

Mt Δat + Ct Δvt + Kt Δut = Rt+Δt − (VI
t + VD

t + VS
t ) , (24)

with inertia forces VI
t = Mt at, damping forces VD

t = Ct vt, elastic forces VS
t = Kt ut and

with corresponding accelerations, velocities and displacements at, vt and ut, respectively.
The vectors of nodal point accelerations and velocities are given as time derivatives of the
vector of nodal displacements ut. The mass, damping and stiffness matrices Mt, Ct and Kt,
respectively, are constructed of element matrices established directly. The subscript t denotes
the current time and R is the vector of the wind forcing. If the facade is in equilibrium at
time t, the right-hand side of Eq. (24) will be identical with the increment of wind forcing
in the time step Δt. The increments in nodal displacements, velocities and accelerations
are thus expressed by wind forcing increments and known physical property matrices. If
matrices change during time steps then equation (24) is only approximately true. The
vector of approximation error given by

ΔVt+Δt = Rt+Δt − (VI
t+Δt + VD

t+Δt + VS
t+Δt) (25)

is a measure how close to equilibrium the solution has been approached by equation (24).

The governing incremental equation of motion is given in modified Eq. (24) by

Mt Δat + Ct Δvt + Pt Δut = ΔRt , (26)

where Pt Δut is the vector of nonlinear forces. The pseudo-force method applied here is
defined by

Pt Δut = Kt Δut + Nt Δut − ΔVt+Δt , (27)

where Nt Δut is the vector of nonlinear terms (pseudo-forces) and ΔVt+Δt is approximation
error defined above. In the application of the pseudo-force technique the term Pt Δut is
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placed on the right-hand side of Eq. (26) and the vector of nonlinear terms is treated as
pseudo-force vector. At each time step an estimate of Nt Δut is computed and iterations
are made until ΔVt+Δt becomes sufficiently small when compared with tolerance norm
adopted. As an estimate for Nt Δut in first iteration at time step Δt, an extrapolated value
from previous solutions is used, e.g.

Nt Δut = (1 + α)Nt−Δt Δut−Δt − αNt−2Δt Δut−2Δt , (28)

where α is an extrapolation parameter ranging from 0 to 1.

In ultimate analysis it is desirable to seek a strategy of optimal calculations which may
be defined in the terms of a number of control parameters specifying the linearization tech-
niques, the frequency of reformulation of effective stiffness matrix, convergence tolerances
and limits on the maximum number of iterations and on the degree of variability of time
step size adopted.

5. Wave propagation

The wave propagation has two physical aspects – the source of waves and turbulences
and the medium where they are running. The source is defined in accordance with laminar
and turbulent wind forcing and geometry of the facade sheet studied.

The waves initiated in the source are filtered in the facade sheet and are given by spectral
evolution. The diffraction of waves appears in the inhomogeneities of the facade.

The spectral evolution is based on definitions :

1. Each stationary function x(t) is interpreted in integral form by

x(t) =
∫

ei ω t dA(ω) , (29)

with A(ω) as orthogonal complex process.

2. The linear transformation y(t) of the function x(t) in Eq. (29) is given by

y(t) =
∫
H(iω) ei ω t dA(ω) , (30)

with H(iω) as the admittance function adopted.

3. Spectral densities of the functions x(t) and y(t) are given by

Sy(ω)
Sx(ω)

= |H(iω)|2 . (31)

The stationary waves are emitted from the wind forcing with complex amplitude F (ω, zo),
i.e., z = zo. The wave superposition is given by

wi(t, z) =
∫

e−i ω t ei r(ω z) dF (ω, zo) . (32)

Structural inhomogeneity in the facade is touched by propagating waves. The response
spectrum of the inhomogeneity is given by

S(ω, 0) = S(ω, zo) |H(ω, 0|2 e−2 Im[r(ω)] , (33)
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with H(ω, 0) as structural response due to the wind forcing adopted. The response spectrum
is the basis for the number of physical parameters to be specified in the assessment of the
facade studied.

6. Linear response

In linear analysis response due to turbulence wind forcing is assumed an arbitrary func-
tion of time bF(t), satisfiyng the Dirichlet conditions together with the condition that∫ |bF(t)| dt is convergent. The equations of the Fourier integral transformation are given by

HF(ω) =
∫
bF(t) e−i ω t dt , (34)

bF(t) =
1
2π

∫
HF(ω) ei ω t dω . (35)

For two types of the wind forcing the corresponding transformations HF,1(ω) and HF,2(ω)
are given by

HF,1(ω) =
∫

e−a t e−i ω t dt =
1

a+ iω
, (36)

HF,2(ω) =
∫

e−i ω t dt =
1 − e−i ω t

iω
. (37)

The transformations (36) and (37) hold as forcing in the nodes of the facade model adopted.
When assuming the operator

G = ∂/∂t , (38)

the transformations of inertial forces −m(z) G2(u(z, t)) for above types of forcing are
given by∫

(−m(z) G2(u(z, t))) ei ω t dt = m(z)ω2 u(z, ω) + iωm(z)u(z, 0) +m(z) G(u(z, 0)) (39)

with assumption that displacements u(z, t) and their time derivatives G(u(z, t)) obtain zero
values for limit t→ ∞. The transformation of inertial foces appearing is then given by∫

(−m(z) G2(u(z, t))) ei ω t dt = m(z)ω2 u(z, ω) . (40)

The algorithm allows the assessment of ultimate facade response in the wind flow.

7. Nonlinear response

In advanced structural dynamics a lot of direct time integration methods exist for numer-
ical analysis of nonlinear time response due to turbulence wind forcing. Explicit, implicit,
mixed explicit-implicit, variable and adaptive time integration approaches are employed for
a variety of problems appearing.

Explicit methods are represented mostly by the central difference method, with displace-
ments specified in the Taylor series expansion and approximated by second-order accuracy
in the development of the time step approaches. They are conditionally stable with second-
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order precision in time [7]. Another explicit formulation available is the Modified Euler
Method (MEM) presented by Hahn [8]. Tamma [9] and Li [10] developed more efficient
explicit, conditionally stable, second-order accurate and direct self-starting formulations in
dynamics. The advantages of both direct time integration methods and modal superposi-
tion approaches methods combined Tamma in [11] into an explicit, unconditionally stable,
second-order accurate VIrtual-Pulse (VIP) time integral method. Another unconditionally
stable and second-order accurate explicit algorithm of such type was suggested by Tru-
jillo [12].

Implicit methods require the solution of a set of equations at each time step. New-
mark [13] introduced basic implicit algorithm for the time integration problems. The algo-
rithm assumes the constant value of the average acceleration in each integration time step
studied. As an implicit scheme the Newmark method is unconditionally stable with the
second-order accuracy. As an explicit scheme the Newmark method is only conditionally
stable with the second-order accuracy. The Wilson θ-method [14] is essentially an exten-
sion of the average acceleration approximation with linear variations between time levels.
The collocation methods combine the aspects of the Newmark and Wilson approaches. The
collocation approach can be adjusted to reduce either to the Newmark or to the Wilson
techniques. The analysis of such approach is submitted in Hilber and Hughes [15]. For the
control of the algorithmic damping some modifications have been attempted employing the
Newmark family with trapezoidal schemes (see Refs. [16, 17 and 18]).

8. Garbage in, garbage out

Theoretical strategy developed can be interesting, however, the brain washing is an
inevitable topic in each aeroelastic analysis. Due to irregularities and turbulences appearing
in the air flow and in the inhomogeneities in the facade and its supports, the peril of item
‘garbage in, garbage out’ appears as significant option in the assessment. Without databank
of all experimental results obtained in the wind canal tests, summed up in the corresponding
databasis of the problem and being used as input data for calculation, is useless to start the
sophisticated analysis in order to obtain the output data required.

The databasis of the problem, obtained by the tests made in the wind canal of The Insti-
tute of Structures and Architecture, Slovak Academy of Sciences, Bratislava, with evaluation
of the results is partially presented below.

9. Tests in wind canal

The application was made on the plexiglass facade of the famous ‘Cheese House’, erected
in Nitra, Slovakia (Figs. 1 and 2). The facade there was made of yellow plexiglass sheets in
order to create the architectural image of the Emmenthaler Cheese.

The facade was connected by joints with supporting steel frame. The width of the
plexiglass sheets was 15mm. The views of the model are in Figs. 3 and 4, with basic
dimensions in Fig. 5. The facade acts with wind induced displacements combined with
horizontal vibrations of supporting steel structure. The tests were made via strains and
accelerations registered in the model of the facade sheet. The location of tensometers is
illustrated in Fig. 6. The model was exposed to the wind forcing with velocities 0–40m/sec.
Measured were three accelerations (A1, A2 and A3) and four relative displacements (T1,
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Fig.3: View of the model Fig.4: Another view of the model

Fig.5: Geometry of the experimental set-up Fig.6: Location of accelerometers

Fig.7: Experimental set-up in wind canal for configuration 0◦
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Fig.8: Configuration 0◦ – accelerations A1, A2 and A3

Fig.9: Configuration 0◦ – Fourier spectrum of accelerations A1, A2 and A3
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Fig.10: Configuration 0◦ – wind velocity Vel (m/s)

Fig.11: Configuration 0◦ – time response of strains T1, T2, T3 and T4
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Fig.12: Maximal amplitudes in configuration 0◦ – Mer 2

Fig.13: Maximal amplitudes in configuration −15◦ – Mer 1

T2, T3 and T4) under consideration of the air velocity (Vel) in the artificial boundary layer
of the wind canal.

Used section of the wind canal had the dimensions 1200×1200mm. The testing was
made in accordance with the wind loads appearing on the actual facade shet in situ, where
the plexiglass sheet is distanced 400mm from the brick wall of the building. The tests in
the wind canal were made for three experimental configurations:

a) panel in horizontal level 0◦ – shear wind acting parallel along the facade;
b) panel in skew level −15◦ – suction due to down wind;
c) panel in skew level +15◦ – pressure due to skew wind and face uplift wind.
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Fig.14: Maximal amplitudes in configuration −15◦ – Mer 3

Fig.15: Maximal amplitudes in configuration +15◦ – Mer 1

Measurement strain T1 strain T2 strain T3 strain T4
Nr. 0/00 0/00 0/00 0/00
Mer 1 −0.0273 +0.0077 − −0.0215
Mer 2 −0.0223 +0.0043 − −0.0190
Mer 3 −0.0154 −0.0058 − −0.0108
Mer 4 −0.0269 −0.0077 − −0.0237

Max. stress σT1 (MPa) σT2 (MPa) σT3 (MPa) σT4 (MPa)
−6.9935 −1.9725 − −6.0713

Tab.1: Max. strains in configuration 0◦
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Fig.16: Maximal amplitudes in configuration +15◦ – Mer 5

Measurement strain T1 strain T2 strain T3 strain T4
Nr. 0/00 0/00 0/00 0/00
Mer 1 −0.1055 0.0178 −0.0207 −0.0659
Mer 2 −0.0757 −0.0409 −0.0137 −0.0471
Mer 3 −0.0777 −0.0155/+0.0166 −0.0130 −0.0500
Mer 4 −0.0785 −0.0195/+0.0106 −0.0146 −0.0484

Max. stress σT1 (MPa) σT2 (MPa) σT3 (MPa) σT4 (MPa)
−27.0262 4.5599/ − 10.4775 −5.3028 −16.8818

Tab.2: Max. strains in configuration −15◦

Measurement strain T1 strain T2 strain T3 strain T4
Nr. 0/00 0/00 0/00 0/00
Mer 1 +0.0624 +0.0542 +0.0210 +0.0372
Mer 2 +0.0749 +0.0363 +0.0229 +0.0431
Mer 3 +0.0716 +0.0234 +0.0225 +0.0419
Mer 4 +0.0718 +0.0288 +0.0230 +0.0422
Mer 5 +0.0758 +0.0319 +0.0215 +0.0414

Max. stress σT1 (MPa) σT2 (MPa) σT3 (MPa) σT4 (MPa)
+19.4179 +13.8846 +5.8920 +11.0411

Tab.3: Max. strains in configuration +15◦

The results obtained for configuration a) are illustrated in Figs. 7–11. The out of plane
amplitudes of vibration in all three configurations are plotted in Figs. 12–16. The displace-
ments out of the plane of the panel have dominant frequency 18.2–18.3Hz. The evaluation
of the results obtained is made in Tables 1, 2 and 3. The comparison of experimental and
numerical results obtained is summed up in Tables 4, 5 and 6. In accordance with time
response and extremal values of the data in above figures and tables, the resultig response
of the facade sheet is dominated by dynamic displacements with pressure and sucking of
the wind. The displacements have irregular distribution along the surface with turbulences
distinctly influencing the deformations and vibrations of the facade shet studied.
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Measurement max. wind velocity acceleration A1 acceleration A2 acceleration A3
Nr. (m/s) (m/s2) (m/s2) (m/s2)
Mer 1 34.7 3.405 (3.353) 6.045 (6.212) 3.616 (3.741)
Mer 2 36.8 3.319 (3.289) 7.235 (7.342) 3.327 (3.793)
Mer 3 26.4 1.760 (1.732) 3.080 (3.127) 2.065 (2.211)
Mer 4 36.3 3.664 (3.613) 7.527 (7.755) 3.766 (3.835)

Extreme displacements in Mer 2 d1 (mm) d2 (mm) d3 (mm)
min −0.044 (−0.047) −0.247 (−0259) −0.042 (−0.049)
max +0.057 (+0.062) +0.297 (+0.311) +0.047 (0.052)

Tab.4: Max. accelerations in configuration 0◦, measured and (calculated)

Measurement max. wind velocity acceleration A1 acceleration A2 acceleration A3
Nr. (m/s) (m/s2) (m/s2) (m/s2)
Mer 1 28.40 8.880 (8.920) 12.421 (12.567) 2.365 (2.513)
Mer 2 37.20 5.367 (5.375) 13.622 (13.736) 4.939 (5.067)
Mer 3 38.50 7.062 (7.088) 15.227 (15.562) 6.059 (6.214)
Mer 4 38.30 6.464 (6.598) 14.599 (14.952) 7.050 (7.146)

Extreme displacements in Mer 1 d1 (mm) d2 (mm) d3 (mm)
min −0.068 (−0.072) −1.392 (−1.422) −0.021 (−0.028)
max +0.070 (+0.079) +1.225 (+1.341) +0.018 (+0.019)

Tab.5: Max. accelerations in configuration −15◦, measured and (calculated)

Measurement max. wind velocity acceleration A1 acceleration A2 acceleration A3
Nr. (m/s) (m/s2) (m/s2) (m/s2)
Mer 1 38.00 6.628 (6.702) 10.519 (10.531) 5.424 (5.582)
Mer 2 38.60 6.533 (6.551) 10.021 (19.049) 5.432 (5.593)
Mer 3 38.50 6.381 (6.395) 10.354 (10.367) 6.085 (6.123)
Mer 4 38.80 6.063 (6.095) 9.997 (10.212) 4.942 (4.972)
Mer 5 39.90 5.639 (5.646) 12.365 (12.877) 5.605 (5.827)

Extreme displacements in Mer 5 d1 (mm) d2 (mm) d3 (mm)
min −0.029 (−0.033) −0.514 (−0.538) −0.049 (−0.53)
max +0.031 (+0.035) +0.504 (+0.539) +0.046 (+0.051)

Tab.6: Max. accelerations in configuration +15◦, measured and (calculated)

The results obtained were summed up in the databasis of input data for the wind resistant
design of the plexiglass facade suggested.

10. Conclusions

The results submit some image on ultimate aeroelastic behaviour of facades made of
plexiglass sheets. The approaches suggested allow the aeroelastic assessment of the problem.
Established was the databasis of evaluated experimental results. Such databasis obtained by
the tests made in the wind canal contains all input data for numerical analysis and for the
development of virtual models for the assessment of aeroelastic reliability of such structures.

On the basis of the evaluation of the results obtained was made the design of the plexiglass
facade with satisfaction of all safety and reliability requirements and with following succesful
in situ implementation.
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