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EUROCODE 2 PROVISION AGAINST AMERICAN
STANDARDS (ACI 209R-92 AND

GARDNER&LOCKMAN MODELS) IN CREEP ANALYSIS
OF COMPOSITE STEEL-CONCRETE SECTION

Doncho Partov*, Vesselin Kantchev*

The paper presents analysis of the stress-strain behaviour due to creep in statically
determinate composite steel-concrete beam according to Eurocode 2, ACI209R-92
and Gardner&Lockman models. The mathematical model involves the equation of
equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the
steel part and an integral-type creep law of Boltzmann-Volterra for the concrete part
considering the above mentioned models. On the basis of the theory of the viscoelastic
body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of
stresses in beam section between concrete plate and steel beam with respect to time ‘t’,
two independent Volterra integral equations of the second kind have been derived.
Numerical method based on linear approximation of the singular kernel function in
the integral equation is presented. Example with the model proposed is investigated.
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1. Introduction

The time-varying behaviour of composite steel-concrete members under sustained service
loads drawn the attention of engineers who were dealing with the problems of their design
more than 60 years [7–10]. Creep has a considerable impact upon the performance of com-
posite beams, causing increased deflection as well as affecting stress distribution. Creep in
concrete represents dimensional change in the material under the influence of sustained load-
ing. Failure to include creep effects in the analysis of the composite steel-concrete beams may
lead to excessive deformation and caused significant redistribution of stress between concrete
plate and steel beam. In general, time-dependent deformation of concrete regarding creep
phenomena may severely affect the serviceability, durability and stability of structures. In
this paper we try to make the comparison in results, obtained from Eurocode 2, ACI209R-92
and G&L models [1] in creep analysis of composite steel concrete beams. Before that but
we try to introduce the fundamentals of linear viscoelasticity of aging materials applied to
concrete in the light of the great international school of hereditary mechanics of: Northwest
University in USA [1], Politecnico of Turin [2] and ČVUT in Prague [3].

1.1. Fundamentals of linear viscoelasticity of aging materials applied to concrete

Concrete is considered to comply with the linear theory of viscoelasticity for aging mate-
rials [1–3]. Introducing the creep (compliance) function J(t, τ) and summing the responses
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to all uniaxial stress increments introduced at times τ , the following integral relations are
obtained to model the responses at time t to sustained variable imposed stresses :

εcσ =

t∫
t0

dσ
dτ

J(t, τ) dτ , (1)

where: εcσ = εc(t)−εcn – stress-dependent strain, εc(t) – total strain at time t; εcn(t) – stress
independent strain. Here the hereditary integrals must be intended as Stieltjes integrals in
order to admit discontinuous stress histories σ(t). If the law of variation of the imposed
stress considered continuous after an initial finite step, the ordinary Rieman definition of
the integral applies and Eq. (1) may be written in the form :

εcσ = σ(t0)J(t, t0) +

t∫
t0

dσ
dτ

J(t, τ) dτ , (2)

Equation (1) can be written in the operator form :

εcσ = J σ ,

where J represents the uniaxial creep operators according Bažant [1].

The compliance function J(t, τ) is normally separated, on the basis of some convention,
into an initial strain J(τ + Δ, τ) with Δ = t − τ small, which is treated as instantaneous
and elastic (nominal elastic strain) introducing a corresponding elastic modulus for the
concrete Ec(τ), and a creep strain C(t, τ), i.e.:

J(τ + Δ, τ) ∼= J(τ, τ) =
1

Ec(τ)
, (3)

J(t, τ) =
1

Ec(τ)
+ C(t, τ) . (4)

A creep coefficient φ is normally introduced representing the ratio between the creep
strain C(t, τ) and the initial strain at t = τ (e.g. in B3 model), or at a conventional age τ
at loading (e.g. in CEB MC90 model, with τ = 28days), i.e.:

J(t, τ) =
1

Ec(τ)
+
φ(t, τ)
Ec(τ)

, (5)

J(t, τ) =
1

Ec(τ)
+
φ28(t, τ)
Ec28(τ)

. (6)

It must be noted that for structural analysis the compliance function J(t, τ) is of very im-
portance. The conventional separation adopted in Eq. (4) and the value of Δ in Eq. (3) have
no influence on the result of the analysis, except in the definition of the ‘initial’ (nominally
elastic) state of deformation or of stress due to a sudden application of actions (respectively
forces or imposed deformations). Such a state is in effect by itself a matter of convention
depending on the procedures in the application of the actions at t = t0 on the structure, on
the initial time t0 + Δ of observation of the effect and on the measuring procedures.
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Time-dependent properties of concrete are fully characterized by J(t, τ). For realistic
forms of J(t, τ) Eq. (1) is not integrable analytically, and numerical integration is mandatory.

In this respect, it must be considered that creep of concrete is a very complex phenomenon
involving several interacting physical mechanisms at different scales of the microstructure,
which are influenced by many factors; physical mechanisms and modelling criteria are still
being debated [4]. Hence, a relatively high degree of sophistication in a realistic creep pre-
diction model is unavoidable. A further cause of complexity of creep models to be used in
structural analysis is a need to provide the average creep properties of the cross section for
traditional simplified one-dimensional analysis of beams and frames. Such properties are
characterized by non-uniform creep and shrinkage developing within the section, due to the
drying process, and are influenced by the cross section geometry and stress distribution.
As a consequence, the algebraic expressions for the prediction of the compliance function
J(t, τ) for the average creep properties of the concrete cross section in drying conditions
are inevitably rather complex (and less accurate than the constitutive law for a material
point) in all the prevailing creep prediction models presented in recent literature [4], and/or
considered by international associations [CEB (1993), ACI (2004)]. Standard numerical pro-
cedures for the solution of the integral equation of Volterra have been developed in the past
by Bažant [5], and they have been incorporated in design manuals of Chiorino [2], bringing
to an end a line of research, that has been investigated for more than fifty years. It has been
in fact practically demonstrated that no formulation for J(t, τ) can be found that would be
sufficiently accurate and would allow at the same time the precisely solution of the creep
problem in the structures. The problem of the creep induced stress redistribution in the
composite steel-concrete beams is dealt with within the theory of linear viscoelasticity for
aging materials, which is normally considered appropriate for the creep analysis of struc-
tures of Bažant [1] and Chiorino [2]. Recent progresses of the theory of linear viscoelasticity,
extended to materials like concrete showing a complex creep behavior, allow a rational inter-
pretation of any kind of creep induced structural effects through very compact formulations
on the basis of integral equations of Volterra. For this purpose, proper design aids to be
inserted in manuals of bridge practice, can be offered to designers by a numerical solution
of the Volterra integral equation, performed once for ever for the above mentioned creep
prediction models suggested by international civil engineering associations, or of a power-
ful numerical solution for the automatic immediate calculation of development of internal
forces in the time t from any given compliance function J(t, t0). This paper focuses on the
development of these numerical solutions and theoretically consistent procedures, and of the
corresponding design aids, for the evaluation of the creep induced stress redistribution in
composite steel-concrete sections and on their application to steel-concrete bridges.

2. Basic equations for determining the creep coefficient according various
provisions

2.1. Eurocode 2 model

The creep (compliance) function proposed by the 1990 CEB Model Code (‘CEB-FIP’
1991) is given by the relationship :

J(t, t0) =
1

Ec(t0)
+
φ(t, t0)
Ec

,

where φ(t, t0) is the creep coefficient and Ec(t0) and Ec are modulus of elasticity at the
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age of t0 and 28 days, respectively [1]. The creep coefficient is evaluated with the following
formula :

φ(t, t0) = φRH β(fcm)β(t0)βc(t− t0) ,

where

φRH = 1 +
1 − RH

100

0.46
(
h0
100

)0.33
is a factor to allow for the effect of relative humidity on the notional creep coefficient. RH is
the relative humidity of the ambient environment in %,

β(fcm) =
5.3(

fcm
10

)0.5

is a factor to allow for the effect of concrete strength on the notional creep coefficient,

β(t0) =
1

0.1 + (t0)0.2

is a factor to allow for the effect of concrete age at loading on the notional creep coefficient
(for continuous process we consider the function),

β(τ) =
1

0.1 + (τ)0.2

is a function of aging, depending on the age of concrete and it characterizes the process of
aging.

βc(t− t0) =
[

t− t0
βH + (t− t0)

]0.3
is a function to describe the development of creep with time after loading,

βH = 150

[
1 +

(
1.2

RH

100

)18
]
h0

100
+ 250 ≤ 1500

coefficient depending on the relative humidity (RH in %) and notional member size
(h0 in mm), where is the mean compressive strength of concrete at the age of 28 days
(MPa) and h0 = 2Ac/u is the notional size of member (mm) (Ac – the cross section and
u – the perimeter of member in contact with the atmosphere). Constant Young’s modulus
is given by Ec = 104 (fcm)1/3. Variable Young’s modulus is given by : Ec(t) = β0.5

cc Ec,
where Ec = 104 (fcm)1/3 and βcc = exp[s (1−5.3/t0.5)], where s = 0.25 for normal and rapid
hardening cements. So

Ec(t) = 336190 e0.5
�
0.25

�
1− 5.3√

t

��
,

φ0 = φRH β(fcm)β(t0) is a final creep.

2.2. ACI 209R-92 model

This is an empirical model developed by Branson and Christiason in 1971, with minor
modification introduced in ACI 209R-92 [6]. The shape of the curve and ultimate value
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depend on several factors such as curing conditions, age of application of load, mixture
proportioning, ambient temperature and humidity. The corrections factors are applied to
ultimate values. Because creep equation for any period is a linear function of the ultimate
values, however, the correction factors in this procedure may be applied to short-term creep.
The creep function proposed by the ACI 209R-92 model, that presents the total stress-
dependent strain by unit stress is given by the relationship :

J(t, t0) =
1

Ecmt0
+
φ(t, t0)
Ecmt0

=
1 + φ(t, t0)
Ecmt0

,

where φ(t, t0) is the creep coefficient as the ratio of the creep strain to the elastic strain
at the start of loading at the age t0 (days) and Ecm0 is the modulus of elasticity at the
time of loading t0 (MPa), respectively. The creep model proposed by ACI 209R-92 has
two components that determine the ultimate asymptotic value and the time development of
creep. The predicted parameter is not creep strain, but creep coefficient φ(t, t0), defined as
the ratio of the creep strain to the initial elastic strain. The creep coefficient is evaluated
with the following formula :

φ(t, t0) = φu βc(t− t0) ,

where φ(t, t0) is the creep coefficient at the concrete age t due to a load applied at the
age t0, (t − t0) is the time since application of load, φu is the ultimate creep coefficient.
For the standard conditions in the absence of specific creep date for local aggregates and
conditions, the average value proposed for the ultimate creep coefficient φu is equal to 2.35 .
For conditions other than standard conditions the value of the ultimate creep coefficient
φu = 2.35 needs to be modified by six correction factors, depending on particular conditions,
where φu = 2.35 γc and γc = γc,t0 γc,RH γc,vs γc,s γc,ψ γc,α; γc,t0 = 1.25 t−0.118

0 corresponds
to β(t0) in CEB MC90, is a function of aging, depending on the age of concrete and it
characterizes the process of aging; γc,RH = 1.27 − 0.67 h for h ≥ 0.40 is the ambient humi-
dity factor, where the relative humidity h is in decimal (corresponds to φRH CEB MC90);
γc,vs = 2 (1 + 1.13 e−0.0213 (V/S))/3 (corresponds to βH in CEB MC90), where V is the
specimen volume in mm3 and S the specimen surface area in mm2, allows to consider the
size of member in terms of the volume-surface ratio; γc,s = 0.82+0.00624 s is a slump factor,
where s = 75mm is the slump of fresh concrete; γc,ψ = 0.88 + 0.0024ψ is fine aggregate
factor, where ψ = 40 is the ratio of fine aggregate to total aggregate by weight expressed as
percentage; γc,α = 0.46+0.009α ≥ 1 is an air content factor, where α = 2 is the air content
in percentage.

βc(t− t0) =
(t− t0)0.6

10 + (t− t0)0.6

is a function to describe the development of creep with time after loading. The secant
modulus of elasticity of concrete Ecmt0 at any time t0 of loading is given by Ecmt0 =
= 0.043 	1.5

c

√
fcmt0 MPa, where 	c is the unit weight of concrete (kg/m3) and fcmt0 is

the mean concrete compressive strength at the time of loading (MPa).The general equation
for predicting compressive strength at an time t is given by fcmt0 = fcm28 t/(a+ b t), where
fcm28 is the concrete mean compressive strength of 28 days in MPa; a (in days) and b are
constants and t is the age of the concrete.
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2.3. Gardner&Lockman 2000 model

It is modified Atlanta 97 model 1993, which itself was influenced by CEB MC90-99 [6].
The compliance expression is based on the modulus of elasticity at 28 days, instead of the
modulus of elasticity at age of loading. This model includes a term for drying before loading,
which applies to both basic and drying creep. Required parameters: Age of concrete when
drying starts, usually taken as the age at the end of moist curing (days); Age of concrete at
loading (days); Concrete mean compressive strength at 28 days (MPa or psi); Concrete mean
compressive strength at loading (MPa or psi); Modulus of elasticity of concrete at 28 days
(MPa or psi); Modulus of elasticity of concrete at loading (MPa or psi); Relative humidity
expressed as a decimal; and Volume-surface ratio (mm or in.); The creep (compliance)
function proposed by the (Gardner and Lockman 2001), is composed of the elastic and
creep strains. The elastic strain is reciprocal of the modulus of elasticity at the age of
loading Ecmt0 and the creep strain is the 28 day creep coefficient divided by the modulus of
elasticity at 28 days Ecm28. The creep coefficient φ28(t, t0) is the ratio of the creep strain to
the elastic strain due to the load applied at the age of 28 days. So,

J(t, t0) =
1

Ecmt0(t0)
+
φ28(t, t0)
Ecmt0

,

where Ecmt0 is the modulus of elasticity of concrete at the time of loading t0, Ecm28 is the
mean modulus of elasticity concrete at 28 days (MPa), 1/Ecmt0 represents the initial strain
per unit stress at loading. φ(t, t0) gives the ratio of the creep strain since the start of loading
at the age t0 to the elastic strain due to a constant stress applied at a concrete age of 28 days.
The 28-day creep coefficient φ28(t, t0) is calculated using the next formulae :

φ28(t, t0) = Φ(tc)

[
2

(t− t0)0.3

(t− t0)0.3 + 14
+
(

7
t0

)0.5( (t− t0)
(t− t0) + 7

)0.5

+

+ 2.5 (1 − 1.086 h2)

(
(t− t0)

(t− t0) + 0.12
(
V
S

)2
)0.5]

.

The creep coefficient includes three terms. The first two terms are required to calculate the
basic creep and the third term is for the drying creep. At a relative humidity of 0.96 there
is only basic creep. There is no drying creep. Φ(tc) is the correction term for the effect of
drying before loading. If t0 = tc; Φ(tc) = 1. When t0 > tc,

Φ(tc) =

⎡
⎣1 −

(
(t0 − tc)

(t0 − tc) + 0.12
(
V
S

)2
)0.5

⎤
⎦

0.5

,

t0 is an age of concrete at loading, (days), tc is an age of concrete when drying starts at the
end of moist curing, (days). To calculate relaxation, remains constant at the initial value
throughout the relaxation period. For creep recovery calculation, Φ(tc) remains constant at
the value at the age of loading. If experimental values are not available the modulus of elas-
ticity Ecmt at any time t is given by Ecmt = 3500+4500

√
fcmt, where strength development

with time can be calculated from the compressive strength using equation fcmt = β2
e fcm28.

This equation is a modification of the CEB strength-development relationship. So,

βe = exp

[
s

2

(
1 −

√
28
t

)]
,
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where s = 0.4 is CEB (1993) style strength-development parameter and βe relates strength
development to cement type. Relationship between specified and mean compressive strength
of concrete can be estimated from the equation : fcm28 = 1.1 f ′

c + 5.0 . According [6] many
basic features of Model GL are questionable on the basis of the current understanding of the
mechanics and physics of concrete shrinkage and creep, and violate the guidelines published
by a RILEM Committee. Some of them are as follows : disagreement with diffusion theory,
the effect of age on creep according this model is far too weak and too short-lived, the creep
coefficient for the additional creep due to drying is given in this model by a curve that
does not have a bounded final value, the creep recovery curve calculated according to the
principle of superposition is violated by the GL model (Bažant&Baweja 2000).

3. Basic equations of equilibrium

Let us denote both normal forces and bending moments in the cross-section of the
plate and the girder after the loading in the time t = 0 with Nc,0, Mc,0, Na,0, Ma,0

and with Nc,r(t), Mc,r(t), Na,r(t), Ma,r(t) a new group of normal forces and bending mo-
ments, arising due to creep and shrinkage of concrete. For a composite bridge girder with
Jc = Ac(n Ic)n/(As Is) ≤ 0.2 according to the suggestion of Sonntag [2] we can write the
equilibrium conditions in time t as follows :

N(t) = 0 , Nc,r(t) = Na,r(t) , (7a)∑
M(t) = 0 , Mc,r(t) +Nc,r(t) = Ma,r(t) . (7b)

Due to the fact that the problem is a twice internally statically indeterminate system, the
equilibrium equations (7) are not sufficient to solve it. It is necessary to produce two
additional equations in the sense of compatibility of deformations of both steel girder and
concrete slab in time t (Fig. 1).

Fig.1: Mechanic-mathematical model for deformations
in cross-section, regarding creep of the concrete
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4. Deriving of the generalized mechanic-mathematical model according EC 2

4.1. Strain compatibility on the contact surfaces between the concrete and steel
members of composite girder

For constant elasticity module of concrete strain compatibility on the contact surfaces
between the concrete and steel members of composite girder is :

εsh(t0) f(t− t0) +
Nc,0

Ec(t0)Ac
[1 + φRH β(fcm)β(t0)βc(t− t0)] −

− 1
Ec(t0)Ac

t∫
t0

dNc,r(τ)
dτ

[1 + φRH β(fcm)β(τ)βc(t− τ)] dτ +

+
Na,0

EaAa
− 1
EaAa

t∫
t0

dNa,r(τ)
dτ

dτ =
Ma,0

Ea Ia
r + r

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

4.2. Compatibility of curvatures

Compatibility of curvatures when τ = t is

Mc,0

Ec(t0) Ic
[1 + φRH β(fcm)β(t0)βc(t− t0)] −

− 1
Ec(t0) Ic

t∫
t0

dMc,r(τ)
dτ

[1 + φRH β(fcm)β(τ)βc(t− τ)] dτ =

=
Ma,0

Ea Ia
+

1
Ea Ia

t∫
t0

dMa,r(τ)
dτ

dτ .

Here is the place to explain the meaning of the second term of the above mentioned integral
relations. This type of integral, known as a hereditary integral of Stieltjes expresses time
history of loading. (If in 1854 Georg F. B. Rieman gave a set of necessary and sufficient
conditions under which a bounded function is said to be integrable and if Rieman domi-
nated the field of integration until 1894, then a Dutch mathematician named Thomas Jan
Stieltjes (1856–1894) developed the Rieman-Stieltjes integral while investigating a very spe-
cific problem concerning a thin rod of nonuniformly distributed mass). Since in our case the
stress history σc,r(τ), which represents the distribution of stress between concrete plate and
steel beam, is continuous summing strain histories due to all small stress increments before
time t yields to perfect satisfying the strain compatibilities.

After integrating the two equations by parts and using (7a) and (7b) for assessment of
normal forces Nc,r(t) and bending moment Mc,r(t) two linear integral Volterra equations of
the second kind are derived.

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ

[1 + φRH β(fcm)β(τ)βc(t− τ)] dτ +

+ λNNc,0 φRH β(fcm)β(t0)βc(t− t0) + λNNsh βc(t− t0) ,

(8)
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Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ

[1 + φRH β(fcm)β(τ)βc(t− τ)] dτ +

+ λMMc,0 φRH β(fcm)β(t0)βc(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) r ,

(9)

where

λN =
[
1 +

EcAc

Ea Aa

(
1 +

Aa r
2

Ia

)]−1

, λM =
[
1 +

Ec Ic
Ea Ia

]−1

.

5. Deriving of the mechanic-mathematical model according ACI 209R-92

Using above mentioned approach, for constant elasticity module of concrete for assess-
ment of normal forces Nc,r(t) and bending moment Mc,r(t) two linear integral Volterra
equations of the second kind are derived.

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ +

+ λNNc,0 2.35 γc5 β(t0)βc(t− t0) ,

(10)

Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ

[1 + 2.35 γc5 β(τ)βc(t− τ)] dτ +

+ λMMc,0 2.35 γc5 β(t0)βc(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) r ,

(11)

6. Deriving of the generalised mechanic-mathematical model according
Gardner&Lockman model

Using above mentioned approach for constant elasticity module of concrete for assessment
of normal forces Nc,r(t) and bending moment Mc,r(t) two linear integral Volterra equations
of the second kind are derived.

Nc,r(t) = λN

t∫
t0

Nc,r(τ)
d
dτ

[1 + Φ(tc)βc(t− τ)] dτ +

+ λNNc,0 Φ(tc)βc(t− t0) ,

(12)

Mc,r(t) = λM

t∫
t0

Mc,r(τ)
d
dτ

[1 + Φ(tc)βc(t− τ)] dτ +

+ λMMc,0 Φ(tc)βc(t− t0) − λM
Ec Ic
Ea Ia

Nc,r(t) r ,

(13)
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7. Numerical method for solution of integral equation of Volterra

Integral equations (9–13) are weakly singular Volterra integral equation of the second
kind :

y(t) = g(t) + λ

t∫
t0

K(t, τ) y(τ) dτ , t ∈ [t0, T ] , 0 < t0 < T <∞ . (14)

So in our case discontinuous kernel functions K(t, τ) have an infinite singularity of type
(t− τ)γ−1, γ > 0.

In order to solve (14), we use the idea of product integration by considering the special
case of

y(t) = g(t) + λ

t∫
t0

L(t, τ) (t− τ)γ−1 y(τ) dτ ,

t ∈ [t0, T ] , 0 < t0 < T <∞ , 0 < γ < 1 .

(15)

where given functions g(t) and L(t, τ) are sufficiently smooth which guarantee the existence
and uniqueness of the solution (see Yosida (1960), Miller&Feldstein (1971) [7, 8, 9, 10]).

To solve (15) we use the method called product trapezoidal rule.

Let n ≥ 1 be an integer and points {tj = t0 + j h}nj=0 ∈ [t0, T ]. Then for general
y(t) ∈ C[t0,T ] we define

(L(t, τ) y(τ))n =
1
h

[(tj − τ)L(t, tj−1) + (τ − tj−1)L(t, tj) y(tj)] , (16)

for fj−1 ≤ τ ≤ tj , t ∈ [t0, T ].

This is piecewise linear in τ and it interpolates L(t, τ) y(τ) at τ = t0, . . . , tn. Using nu-
merical approximation (16) we obtain the following method for solving the integral equation
(15) :

ỹ(ti) = g(ti) + λ
i∑

j=0

ωn,j(ti) [L(ti, tj) ỹn(tj)] for i = 0, 1, . . . , n , (17)

with weights

ωn,0(ti) =
1
h

t1∫
t0

(t1 − τ) (ti − τ)γ−1 dτ ,

ωn,n(tn) =
1
h

tn∫
tn−1

(τ − tn−1) (tn − τ)γ−1 dτ ,

ωn,j(ti) =
1
h

tj∫
tj−1

(τ − tj−1) (ti − τ)γ−1 dτ +
1
h

tj+1∫
tj

(tj+1 − τ) (ti − τ)γ−1 dτ ,

for i = 0, 1, . . . , n.
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Calculating analytically the weights, we compute the approximate solution values yn(ti)
from the system (17).

Theorem 1. Consider the numerical approximation defined with piecewise linear inter-
polation (17). Then for all sufficiently large n, the equation (15) is uniquely solvable and
moreover if y(t) ∈ C2

[t0,T ], then we have

||y − yn|| ≤ c h2

8
max

t0≤t,τ≤T

∣∣∣∣∂2L(t, τ) y(τ)
∂τ2

∣∣∣∣ . (18)

Since L(t, .) ∈ C2
[t0,T ], t0 ≤ t ≤ T the estimate (18) is immediate consequence of theorem

4.2.1 in Atkinson [10].

8. Numerical example

The method presented in the previous paragraph is now applied to a simply supported
beam, subjected to a uniform load, whose cross section is shown in Fig. 2.

Fig.2: Composite beam with cross-section characteristic

8.1. The following parameters are according EUROCODE 2 model

Ec = 3.2×104 MPa , Ea = 2.1×105 MPa , Ac = 8820 cm2 , Aa = 383.25 cm2 ,

n =
Ea

Ec
= 6.56 , Ic = 661500 cm4 , Ia = 1217963.7 cm4 , rc = 23.039 cm ,

ra = 80.829 cm , r = 103.868 cm , Ai = 2453.05 cm2 , Ii = 4536360.758 cm4 ,

M0 = 1237 kNm , Nc,0 = 846.60 kN , Mc,0 = 27.56 kNm , Ma,0 = 330.13 kNm ,

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

= 0.060545358 , λM =
[
1 +

Ec Ic
Ea Ia

]−1

= 0.922950026 ,

h0 =
2AC
u

= 300 mm , βH = 150

[
1 +

(
1.2

80
100

)18
]
h0

100
+ 250 = 915.82 < 1500 ,

β(fcm) =
5.3

(fcm/10)0.5

∣∣∣∣
fcm=30

= 3.06 , β(t0) =
1

0.1 + t0.20

∣∣∣∣
t0=60

= 0.4223 ,
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φRH = 1 +
1 −RH/100
0.46 3

√
h0/100

∣∣∣∣∣
RH=80,h0=300

= 1.3014 , φ0 = φRH β(fcm)β(t0) = 1.6817 ,

βc(36500− 60) = 0.9925811 , φt=36500 = φ0 βc(36500− 60) = 1.669242 .

8.2. The following parameters are according ACE 209R-92 model

Ec = 2.8178×104 MPa , Ea = 2.1×105 MPa , Ac = 8820 cm2 , Aa = 383.25 cm2 ,

n =
Ea

Ec
= 7.452 , Ic = 661500 cm4 , Ia = 1207963.7 cm4 , rc = 25.407 cm ,

ra = 78.463 cm , r = 103.870 cm , Ai = 1566.8248 cm2 , Ii = 4420140.76 cm4 ,

M0 = 1237 kNm , Nc,0 = 837.286 kN , Mc,0 = 24.716 kNm , Ma,0 = 338.05 kNm ,

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

= 0.068220902 , λM =
[
1 +

Ec Ic
Ea Ia

]−1

= 0.93155 .

Mean 28-day strength : fcm28 = 33.3 MPa (fcm28 = 33.0 MPa according to CEB MC90-99).
Mean 28-day elastic modulus Ecm28 = 28178 MPa (Ecm28 = 32009 MPa according to CEB
MC90-99).
	c = 2345 kg/m3, Ec(τ) = Ec(t0) = Econst = Ecmt0 = 0.43 × 23451.5

√
33.30 = 28178 MPa,

according to ACI 209R-92. γc,t0 = 1.25 t−0.118
0 corresponds to β(t0) = 0.61684 for t =

60 days, γc,RH = 1.27 − 0.67 h = 0.734 for h = 0.80, γc,vs = 2 (1 + 1.13 e−0.0213(V/S))/3 =
= 0.6975, where V/S = 150, γc,s = 0.82 + 0.00624 s = 1.018, where s = 75 mm, γc,ψ =
= 0.88 + 0.0024ψ = 0.976, where ψ = 40, γc,α = 0.46 + 0.09α ≥ 1 is air content factor,
where α = 2, γc,α = 1, βc(36500− 60) = 0.982004 .

8.3. The following parameters are according Gardner&Lockman model

Ec = 2.8014×104 MPa , Ea = 2.1×105 MPa , Ac = 8820 cm2 , Aa = 383.25 cm2 ,

n =
Ea

Ec
= 7.496 , Ic = 661500 cm4 , Ia = 1207963.7 cm4 , rc = 25.50 cm ,

ra = 78.37 cm , r = 103.870 cm , Ai = 1560.82 cm2 , Ii = 4415813.859 cm4 ,

M0 = 1237 kNm , Nc,0 = 840.50 kN , Mc,0 = 24.7206 kNm , Ma,0 = 338.386 kNm ,

λN =
[
1 +

EcAc

EaAa

(
1 +

Aa r
2

Ia

)]−1

= 0.068593645 , λM =
[
1 +

Ec Ic
Ea Ia

]−1

= 0.931921295 .

9. Conclusion

In Figs. 3–16 there are shown values of normal forces and bending moments in time t.
A numerical method for time-dependent analysis of composite steel-concrete sections accor-
ding EC2, ACI 209R-92 and G&L models are presented. Using MATLAB code a numerical
algorithm was developed and subsequently applied to a simple supported beam. These
numerical procedures, suited to a PC, are employed to better understand the influence of
the creep of the concrete in time-dependent behaviour of composite section. For a good
accuracy of the time values, the numerical results are presented on logarithmic time scales.
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The choice of the length of time step of the proposed numerical algorithm is based on
numerous numerical experiments with different steps (seven, three and one days). So we
conclude that good results can be achieved from practical point of view with one day step.
For our purpose we consider a period of about 33–35 years. We derive our mathematical
model using a Stieltjes hereditary integral, which represents time loading history. For the
service load analysis, the proposed numerical method makes it possible to follow with great
precision the migration of the stresses from the concrete slab to the steel beam, which occurs
gradually during the time as a result of the creep of the concrete.

The parametric analysis results are characterized by the following effects :
– the state of stress in the concrete slab depends on the age of the concrete at loading

time ;
– the stress in the top flange of the steel section increases strongly with time;
– the stress in the bottom flange undergoes small variations;
– the stress increases more for young concrete and little for old one.

Fig.3: Normal forces Nc,r(t) = Na,r(t), t = 12028 days, t0 = 28 days, (humidity 80 %)

Fig.4: Bending moments Mc,r(t), t = 12028 days, t0 = 28 days, (humidity 80%)
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Fig.5: Bending moments Ma,r(t), t = 12028 days, t0 = 28 days, (humidity 80 %)

Fig.6: Normal forces Nc,r(t) = Na,r(t), t = 12060 days, t0 = 60 days, (humidity 80 %)

Fig.7: Bending moments Mc,r(t), t = 12060 days, t0 = 60 days, (humidity 80%)
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Fig.8: Bending moments Ma,r(t), t = 12060 days, t0 = 60 days, (humidity 80 %)

Fig.9: Normal forces Nc,r(t) = Na,r(t), t = 12090 days, t0 = 90 days, (humidity 80 %)

Fig.10: Bending moments Ma,r(t), t = 12090 days, t0 = 90 days, (humidity 80%)
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Fig.11: Normal forces Nc,r(t) = Na,r(t), t = 12180 days,
t0 = 180 days, (humidity 80 %)

Fig.12: Bending moments Ma,r(t), t = 12180 days, t0 = 180 days, (humidity 80%)

Fig.13: Normal forces Nc,r(t) = Na,r(t), t = 12365 days,
t0 = 365 days, (humidity 80 %)
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Fig.14: Bending moments Ma,r(t), t = 12365 days, t0 = 365 days, (humidity 80%)

Fig.15: Normal forces Nc,r(t) = Na,r(t), t = 12730 days,
t0 = 730 days, (humidity 80 %)

Fig.16: Bending moments Ma,r(t), t = 12730 days, t0 = 730 days, (humidity 80%)
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From Figs. 3–16 it’s clearly seen, that according to the proposed method, according
GL2000, forces Nc,r, Na,r and Ma,r are much greater (between 25–30%) than the same ones
in the CEB MC90-99 method. It reminds the differences obtained from the results, when
solving the same task using the methods based on the theory of viscoelastic body and the
theory of aging of Dischinger and modified theory of aging of Rüsch-Jungwirth. Then we
explain these facts through the assumptions of the viscoelastic body theory. According to
this theory, which takes into account the delayed elastic strain, developing in constrained
conditions, it leads to appearance of recovery of the stresses. They themselves decrease the
relaxation of stresses in concrete of composite beams. That’s why this fact leads to lower
Nc,r and respectively Ma,r. So as a result, we have had according the theory of viscoelastic
body less stresses in the steel beam, which lead to the more economic designing of composite
beam. The neglecting of the reversal of the creep recovery curves obtained from the GL2000
model according to the principle of superposition denoted from Bažant and Baweja (2000)
can be a reason for the significance differences between the results obtained with the GL2000
and CEB MC90-99 methods. It means, that in the light of theory of viscoelastic body, the
relaxation process in the concrete plate will be essentially greater compared with the results
when the creep recovery is taken correctly into account according to the CEB FIP model
(CEN 2004a).

In our opinion the influence of creep on time dependent behavior of composite steel-
concrete beams according to ACI 209R-92 code provisions, in comparison with CEB FIB
model code-1990 is underestimated. It is observed from the numerical results shown on
Figs. 3–16.

According to our results based on numerous practical examples we can state that about
90–92% of the maximum values of the stressed in concrete or steel in time are reached after
about three years. Besides that 98% are reached after about twenty years in comparison
with the period of hundred years obtained by the EM Method [7–10].
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